Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 8. Konferenciaközlemények
  • Konferenciaközlemények
  • View Item
  •   DSpace Home
  • 8. Konferenciaközlemények
  • Konferenciaközlemények
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Load Frequency Control Enhancement Using Reinforcement Learning Technique

Thumbnail
View/Open
ksc_30.pdf (1.024Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/25764
Collections
  • Konferenciaközlemények [686]
Abstract
Microgrids (MGs) face challenges due to load disturbances, the uncertain nature of renewable output power, energy storage system dynamics, and low system inertia. These factors can lead to large frequency deviations, weakening the MG and potentially resulting in a complete blackout. Addressing this, this paper introduces a load frequency control (LFC) method against stochastic power flow from renewable energy sources, leveraging deep reinforcement learning (DRL). A real-time MG test system is employed for simulation purposes. This system is modeled using MATLAB/Simulink, and its performance under various scenarios is analyzed to evaluate the efficacy of the proposed method, contrasting it with existing techniques from the literature. Results indicate that our proposed controller offers a more rapid response and is well-suited for dynamic systems.
Title
Load Frequency Control Enhancement Using Reinforcement Learning Technique
Author
Alfaverh, Khaldoon
Számel, László
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-other-conferenceTitle
XXXIX. Kandó Konferencia
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
XXXIX. Kandó Konferencia 2023 Kiadvány kötet
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerIdentifierIsbn
978-963-449-357-0
xmlui.dri2xhtml.METS-1.0.item-type-type
Konferenciaközlemény
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - villamosmérnöki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV