Rövidített megjelenítés

Alfaverh, Khaldoon
Számel, László
2024-08-21T09:56:17Z
2024-08-21T09:56:17Z
2024
http://hdl.handle.net/20.500.14044/25764
Microgrids (MGs) face challenges due to load disturbances, the uncertain nature of renewable output power, energy storage system dynamics, and low system inertia. These factors can lead to large frequency deviations, weakening the MG and potentially resulting in a complete blackout. Addressing this, this paper introduces a load frequency control (LFC) method against stochastic power flow from renewable energy sources, leveraging deep reinforcement learning (DRL). A real-time MG test system is employed for simulation purposes. This system is modeled using MATLAB/Simulink, and its performance under various scenarios is analyzed to evaluate the efficacy of the proposed method, contrasting it with existing techniques from the literature. Results indicate that our proposed controller offers a more rapid response and is well-suited for dynamic systems.
dc.formatpdfhu_HU
enhu_HU
Load Frequency Control Enhancement Using Reinforcement Learning Techniquehu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - villamosmérnöki tudományokhu_HU
Konferenciaközleményhu_HU
XXXIX. Kandó Konferencia 2023 Kiadvány kötethu_HU
local.tempfieldCollectionsKönyvrészletekhu_HU
Kiadói változathu_HU
XXXIX. Kandó Konferenciahu_HU
978-963-449-357-0hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés