Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • 2.4. 2024 Volume 21, Issue No. 8.
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • 2.4. 2024 Volume 21, Issue No. 8.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

House Energy Management System, for balancing Electricity Costs and Residential Comfort, based on Deep Reinforcement Learning

Thumbnail
View/Open
Kaplar_Vidakovic_Kaplar_Vidakovic_Slivka_148.pdf (856.6Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32913
Collections
  • 2.4. 2024 Volume 21, Issue No. 8. [16]
Abstract
Smart homes are becoming increasingly popular for their potential to reduce electricity costs, through device optimization. Balancing residential comfort with electricity cost reduction presents significant challenges. To tackle this problem, we developed a House Energy Management System (HEMS) using Deep Reinforcement Learning (DRL) to reduce electricity costs, by orchestrating device usage, without compromising residential comfort. The HEMS was trained on a smart home simulation powered by the Typhoon HIL application and supplemented with real-world data, from the Mainflux IoT Platform. The simulation included HEMS-controllable and uncontrollable devices, a solar panel and the electricity grid. We modelled a reward function that balances electricity cost with the residents' comfort and used it to train two DRL models: Double Deep Q Network (DDQN) and Proximal Policy Optimization (PPO). Our findings show that PPO maintains thermal comfort and reduces electricity costs more effectively than does DDQN, particularly in the colder season. As the PPO models’ behavior is season-dependent, it can reduce residential effort by automatically adjusting device schedules in response to changing weather conditions.
Title
House Energy Management System, for balancing Electricity Costs and Residential Comfort, based on Deep Reinforcement Learning
Author
Kaplar, Aleksandra
Vidaković, Milan
Kaplar, Aleksandar
Vidaković, Jovana
Slivka, Jelena
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
deep reinforcement learning, double deep q network, proximal policy optimization, house energy management system, smart home
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.8.2024.8.15
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
8. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - anyagtudományok és technológiák
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV