Rövidített megjelenítés

Kaplar, Aleksandra
Vidaković, Milan
Kaplar, Aleksandar
Vidaković, Jovana
Slivka, Jelena
2025-08-29T08:23:43Z
2025-08-29T08:23:43Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32913
Smart homes are becoming increasingly popular for their potential to reduce electricity costs, through device optimization. Balancing residential comfort with electricity cost reduction presents significant challenges. To tackle this problem, we developed a House Energy Management System (HEMS) using Deep Reinforcement Learning (DRL) to reduce electricity costs, by orchestrating device usage, without compromising residential comfort. The HEMS was trained on a smart home simulation powered by the Typhoon HIL application and supplemented with real-world data, from the Mainflux IoT Platform. The simulation included HEMS-controllable and uncontrollable devices, a solar panel and the electricity grid. We modelled a reward function that balances electricity cost with the residents' comfort and used it to train two DRL models: Double Deep Q Network (DDQN) and Proximal Policy Optimization (PPO). Our findings show that PPO maintains thermal comfort and reduces electricity costs more effectively than does DDQN, particularly in the colder season. As the PPO models’ behavior is season-dependent, it can reduce residential effort by automatically adjusting device schedules in response to changing weather conditions.hu_HU
dc.formatPDFhu_HU
enhu_HU
House Energy Management System, for balancing Electricity Costs and Residential Comfort, based on Deep Reinforcement Learninghu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - anyagtudományok és technológiákhu_HU
deep reinforcement learninghu_HU
double deep q networkhu_HU
proximal policy optimizationhu_HU
house energy management systemhu_HU
smart homehu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.8.2024.8.15
Kiadói változathu_HU
20 p.hu_HU
8. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés