Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards the Development of an Automated Assessment System for the Fundamentals of Laparoscopic Surgery Tests

Thumbnail
View/Open
Mohaidat_Fathabadi_Alkhamaiseh_Grantner_Shebrain_AbdelQader_150.pdf (1.358Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32407
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
The objective of this paper is to provide an overview of projects carried out in the framework of a research collaboration between the Department of Electrical and Computer Engineering and the Department of Surgery, in automated performance assessment for laparoscopic surgery training and testing. This paper focuses on describing the development of deep learning algorithms for object detection and tracking along with computer vision algorithms for performance assessment of Fundamentals of Laparoscopic Surgery (FLS) tests. The proposed automated assessment systems are based on quantitative measurements and expert knowledge using fuzzy logic. The Intelligent Box-Trainer System (IBTS) was used to create videos of several FLS tasks with the assistance of the medical school's surgery residents. Deep Learning (DL) models were developed and trained for three main tests of FLS: Precision Cutting, Peg Transfer, and Suturing. We placed our deep learning models in a publicly accessible database over the internet. The precision of our results compares favorably with other published work and with more data extracted from new videos, the fuzzy logic-based assessment system can be fine-tuned for even better performance.
Title
Towards the Development of an Automated Assessment System for the Fundamentals of Laparoscopic Surgery Tests
Author
Mohaidat, Mohsen
Fathabadi, Fatemeh Rashidi
Alkhamaiseh, Koloud N.
Grantner, Janos
Shebrain, Saad A
Abdel-Qader, Ikhlas
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
object detection, laparoscopic surgery tools tracking, FLS tests, autonomous surgery skill assessment, deep learning models, fuzzy logic
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.10.2024.10.3
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
10. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Orvostudományok - multidiszciplináris orvostudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV