Rövidített megjelenítés

Mohaidat, Mohsen
Fathabadi, Fatemeh Rashidi
Alkhamaiseh, Koloud N.
Grantner, Janos
Shebrain, Saad A
Abdel-Qader, Ikhlas
2025-08-19T08:12:53Z
2025-08-19T08:12:53Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32407
The objective of this paper is to provide an overview of projects carried out in the framework of a research collaboration between the Department of Electrical and Computer Engineering and the Department of Surgery, in automated performance assessment for laparoscopic surgery training and testing. This paper focuses on describing the development of deep learning algorithms for object detection and tracking along with computer vision algorithms for performance assessment of Fundamentals of Laparoscopic Surgery (FLS) tests. The proposed automated assessment systems are based on quantitative measurements and expert knowledge using fuzzy logic. The Intelligent Box-Trainer System (IBTS) was used to create videos of several FLS tasks with the assistance of the medical school's surgery residents. Deep Learning (DL) models were developed and trained for three main tests of FLS: Precision Cutting, Peg Transfer, and Suturing. We placed our deep learning models in a publicly accessible database over the internet. The precision of our results compares favorably with other published work and with more data extracted from new videos, the fuzzy logic-based assessment system can be fine-tuned for even better performance.hu_HU
dc.formatPDFhu_HU
enhu_HU
Towards the Development of an Automated Assessment System for the Fundamentals of Laparoscopic Surgery Testshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Orvostudományok - multidiszciplináris orvostudományokhu_HU
object detectionhu_HU
laparoscopic surgery tools trackinghu_HU
FLS testshu_HU
autonomous surgery skill assessmenthu_HU
deep learning modelshu_HU
fuzzy logichu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.3
Kiadói változathu_HU
20 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés