Rövidített megjelenítés

Sellami, Amira
Rekik, Mouna
Njima, Chakib Ben
Elleuch, Riadh
2025-08-18T12:57:03Z
2025-08-18T12:57:03Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32342
The primary objective of this study is to create an effective multi-target regression model able to predict friction coefficient and wear rate, which are critical parameters for the tribological performance of brake systems. Two models, namely Random Forest (RF) and eXtreme Gradient Boosting (XG), were evaluated using performance metrics such as mean squared error, mean absolute error, and R-squared. In comparing to 1.2, 0.567, 0.59 for RF algorithm, the XG algorithm proves to be the more accurate model with MSE, MAE and R- squared respectively equal to 0.857, 0.4138, 0.756. XG (Extreme Gradient Boosting) outperforms RF (Random Forest) in terms of predictive accuracy in the specified prediction scenario, and the predicted results show good concordance with real values. However, a notable challenge with this model is the lack of interpretability, often referred to as a "black- box." In response to this issue, the study offers a comprehensive explanation, regarding as to how the XG model learns. Shapely Additive explanation model demonstrates that sliding speed is the most influential factor, positively affecting friction coefficient and wear rate of brake pad materials. In summary, the study contributes to the development of a machine learning model, that is accurate and explainable for the prediction of tribological performance in the field of brake pad materials.hu_HU
dc.formatPDFhu_HU
enhu_HU
Towards an Explainable Multi-Target Regression, for Wear and Friction Prediction for Brake Pad Materialshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - anyagtudományok és technológiákhu_HU
extreme gradient boostinghu_HU
multitarget regressionhu_HU
random foresthu_HU
tribological performancehu_HU
brake pad materialshu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.11.2024.11.9
Kiadói változathu_HU
20 p.hu_HU
11. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés