Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards an Explainable Multi-Target Regression, for Wear and Friction Prediction for Brake Pad Materials

Thumbnail
View/Open
Sellami_Rekik_BenNjemma_Elleuch_151.pdf (570.0Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32342
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
The primary objective of this study is to create an effective multi-target regression model able to predict friction coefficient and wear rate, which are critical parameters for the tribological performance of brake systems. Two models, namely Random Forest (RF) and eXtreme Gradient Boosting (XG), were evaluated using performance metrics such as mean squared error, mean absolute error, and R-squared. In comparing to 1.2, 0.567, 0.59 for RF algorithm, the XG algorithm proves to be the more accurate model with MSE, MAE and R- squared respectively equal to 0.857, 0.4138, 0.756. XG (Extreme Gradient Boosting) outperforms RF (Random Forest) in terms of predictive accuracy in the specified prediction scenario, and the predicted results show good concordance with real values. However, a notable challenge with this model is the lack of interpretability, often referred to as a "black- box." In response to this issue, the study offers a comprehensive explanation, regarding as to how the XG model learns. Shapely Additive explanation model demonstrates that sliding speed is the most influential factor, positively affecting friction coefficient and wear rate of brake pad materials. In summary, the study contributes to the development of a machine learning model, that is accurate and explainable for the prediction of tribological performance in the field of brake pad materials.
Title
Towards an Explainable Multi-Target Regression, for Wear and Friction Prediction for Brake Pad Materials
Author
Sellami, Amira
Rekik, Mouna
Njima, Chakib Ben
Elleuch, Riadh
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
extreme gradient boosting, multitarget regression, random forest, tribological performance, brake pad materials
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.11.2024.11.9
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
11. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - anyagtudományok és technológiák
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV