Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Inspection System with GPS and Deep Learning in Urban Rail Safety and Efficiency

Thumbnail
View/Open
Vracar_Marinkovic_Stojanovic_Milovancevic_156.pdf (1.581Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31998
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
Paper focuses on a novel automated rail inspection system, incorporating advanced technologies such as GPS for precise location tracking and GSM/GPRS modules for efficient data transmission. The system uses deep learning to analyze vibration data collected during train transitions, enabling predictive maintenance and enhancing rail safety within urban smart city frameworks. This system represents a significant step forward in intelligent transportation systems by automating and improving the efficiency and accuracy of rail inspections. The use of deep learning for data analysis underscores the potential of AI in infrastructure maintenance, potentially setting a new standard for rail safety protocols. The paper discusses the technical design of the sensor node, the integration of GPS and GSM/GPRS modules, the application of deep learning algorithms, and the analysis of the system's performance through testing and validation. The implications of such a system for smart city infrastructure and urban planning, as well as potential future enhancements and applications of the technology.
Title
Automated Inspection System with GPS and Deep Learning in Urban Rail Safety and Efficiency
Author
Vračar, Ljubomir
Marinković, Dragan
Stojanović, Milan
Milovančević, Miloš
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
19 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
smart sensors, AI, vibration, maintenance
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.4.2025.4.2
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
4. sz..
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV