Rövidített megjelenítés

Vračar, Ljubomir
Marinković, Dragan
Stojanović, Milan
Milovančević, Miloš
2025-08-06T09:57:36Z
2025-08-06T09:57:36Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31998
Paper focuses on a novel automated rail inspection system, incorporating advanced technologies such as GPS for precise location tracking and GSM/GPRS modules for efficient data transmission. The system uses deep learning to analyze vibration data collected during train transitions, enabling predictive maintenance and enhancing rail safety within urban smart city frameworks. This system represents a significant step forward in intelligent transportation systems by automating and improving the efficiency and accuracy of rail inspections. The use of deep learning for data analysis underscores the potential of AI in infrastructure maintenance, potentially setting a new standard for rail safety protocols. The paper discusses the technical design of the sensor node, the integration of GPS and GSM/GPRS modules, the application of deep learning algorithms, and the analysis of the system's performance through testing and validation. The implications of such a system for smart city infrastructure and urban planning, as well as potential future enhancements and applications of the technology.hu_HU
dc.formatPDFhu_HU
enhu_HU
Automated Inspection System with GPS and Deep Learning in Urban Rail Safety and Efficiencyhu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - multidiszciplináris műszaki tudományokhu_HU
smart sensorshu_HU
AIhu_HU
vibrationhu_HU
maintenancehu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.4.2025.4.2
Kiadói változathu_HU
19 p.hu_HU
4. sz..hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés