Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC

Thumbnail
View/Open
Hassanian_Shahinfar_Helgadottir_Riedel_149.pdf (2.655Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32563
Collections
  • Acta Polytechnica Hungarica [98]
Abstract
This study suggests employing a deep learning model trained on on-site wind speed measurements to enhance predictions for future wind speeds. The model uses a gated recurrent unit (GRU) derived from the long short-term memory (LSTM) variant, and is trained using actual measured wind velocity data collected at both 10-minute and hourly intervals. The approach relies on using same-season data for predicting wind velocity, necessitating regular updates to the model with recent measurements to ensure accurate predictions in a timely manner. The results from the prediction model, particularly at a 10-minute interval, demonstrate a significant alignment with the actual data during validation. Comparative analysis of the employed model over a two-year span, with a 24-year distinction, indicates its efficiency across different time periods and seasonal conditions, contingent upon frequent updates with recent on-site wind velocity data. Given the reliance of sequential deep learning models on extensive data for enhanced accuracy, this study emphasizes the importance of employing high-performance computing (HPC). As a recommendation, the study proposes equipping the wind farm or wind farm cluster with an HPC machine powered by the wind farm itself, thereby transforming it into a sustainable green energy resource for the HPC application. The recommended approach in this work is enforcing the smart power grid to respond to the power demand that is connected to predictable wind farm production.
Title
Optimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC
Author
Hassanian, Reza
Shahinfar, Abdollah
Helgadóttir, Ásdís
Riedel, Morris
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
12 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
deep learning, wind energy, wind turbine, smart grid, renewable energy prediction, high-performance computing
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.9.2024.9.4
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
9. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV