Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-Cost Autonomous Trains and Safety Systems Implementation, using Computer Vision

Thumbnail
View/Open
Suciu_Dulf_Kovacs_149.pdf (767.8Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32546
Collections
  • Acta Polytechnica Hungarica [98]
Abstract
The need of modern transport solutions is a tendency that has been developed also in the railway transport. This study provides a possible implementation of a fully autonomous train system with low impact on the railway infrastructure, using computer vision and machine learning concepts. It could be implemented on various existing safety and infrastructure systems. The system has been tested on a H0 scale modified model train and a Raspberry Pi with a Pi Camera as processing unit. The proposed system combines several software and hardware technologies into a single embedded system that provide the required safety on railways and can set the trend for real trains. Furthermore, the main motivation of the concept is that the railway transport automation represents an essential step in transforming this domain into one as flexible as road transport. In this regard, over the years, a multitude of control and safety assurance systems, based on various technologies have been developed to lead to the most optimal outcome. The primary innovation of the study resides in the application of neural network quantization to enhance temporal efficiency, alongside the advancement of a comprehensive autonomous railway transportation system.
Title
Low-Cost Autonomous Trains and Safety Systems Implementation, using Computer Vision
Author
Suciu, Dan Andrei
Dulf, Eva-H.
Kovács, Levente
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
15 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
automation, computer vision, European Rail Traffic Management System, machine learning, railway, quantization, safety
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.9.2024.9.3
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
9. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - közlekedés- és járműtudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV