Rövidített megjelenítés

Gergics, Borbála
Puskás, Melánia
Kisbenedek, Lilla
Dömény, Martin Ferenc
Kovács, Levente
Drexel, András Levente
2025-08-21T07:11:30Z
2025-08-21T07:11:30Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32513
The application of the achievements of mathematics and informatics greatly helped the devel- opment of medicine. Designing personalized therapies using different algorithms is crucial, especially during chemotherapy, to minimize the toxic effects on the patient and avoid resis- tance, thus ensuring a higher quality of life. In this work, we present an LSTM neural network that can quickly and accurately estimate the parameters of the tumor dynamics model based on noisy virtual patient data. In addition, we present a genetic algorithm designed for ther- apy optimization, which is able to predict the most appropriate personalized therapy based on the estimated parameters. In this work, we focus on finding the optimal hyperparameters of this genetic algorithm. Optimizing the hyperparameters is of fundamental importance in designing the best possible personalized therapy.hu_HU
dc.formatPDFhu_HU
enhu_HU
Chemotherapy optimization and patient model parameter estimation based on noisy measurementshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Orvostudományok - klinikai orvostudományokhu_HU
LSTM recurrent neural networkhu_HU
genetic algorithmhu_HU
herapy optimizationhu_HU
noise modelhu_HU
parameter estimationhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.29
Kiadói változathu_HU
20 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés