Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemotherapy optimization and patient model parameter estimation based on noisy measurements

Thumbnail
View/Open
Gergics_Puskas_Kisbenedek_Domeny_Kovacs_Drexler_150.pdf (1.421Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32513
Collections
  • Acta Polytechnica Hungarica [98]
Abstract
The application of the achievements of mathematics and informatics greatly helped the devel- opment of medicine. Designing personalized therapies using different algorithms is crucial, especially during chemotherapy, to minimize the toxic effects on the patient and avoid resis- tance, thus ensuring a higher quality of life. In this work, we present an LSTM neural network that can quickly and accurately estimate the parameters of the tumor dynamics model based on noisy virtual patient data. In addition, we present a genetic algorithm designed for ther- apy optimization, which is able to predict the most appropriate personalized therapy based on the estimated parameters. In this work, we focus on finding the optimal hyperparameters of this genetic algorithm. Optimizing the hyperparameters is of fundamental importance in designing the best possible personalized therapy.
Title
Chemotherapy optimization and patient model parameter estimation based on noisy measurements
Author
Gergics, Borbála
Puskás, Melánia
Kisbenedek, Lilla
Dömény, Martin Ferenc
Kovács, Levente
Drexel, András Levente
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
LSTM recurrent neural network, genetic algorithm, herapy optimization, noise model, parameter estimation
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.10.2024.10.29
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
10. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Orvostudományok - klinikai orvostudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV