Rövidített megjelenítés

Tompa, Tamás
Kovács, Szilveszter
2025-08-19T08:43:20Z
2025-08-19T08:43:20Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32424
The learning process of conventional reinforcement learning methods, such as Q- learning and SARSA typically start with an empty knowledge base. In each iteration step, the initial empty knowledge base is gradually constructed by reinforcement signals obtained from the environment. Even only if a fragment of knowledge is available regarding the system behavior which can be injected into the learning process, the learning performance can be improved. In Heuristically Accelerated Fuzzy Rule Interpolation-based Q-learning (HFRIQ- learning), the external knowledge can be represented in the form of human experts defined state-action fuzzy rules. If the expert knowledge base contains inaccuracies, i.e., incorrect state-action rules, it can negatively impact the learning performance. The main goal of this paper is to introduce a methodology for correcting (optimizing) the inaccurate a priori expert knowledge and as an additional benefit of optimization, to reduce the size of the Q-function representation fuzzy rule-base during the learning phase. The paper also introduces some examples how the quality of expert knowledge influences the HFRIQ-learning performance on a well-known reinforcement learning benchmark problem.hu_HU
dc.formatPDFhu_HU
enhu_HU
Knowledge Base Optimization of the HFRIQ- Learninghu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
reinforcement learninghu_HU
heuristically accelerated reinforcement learninghu_HU
expert knowledge representationhu_HU
fuzzy rule interpolationhu_HU
q-learninghu_HU
expert rule validationhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.6
Kiadói változathu_HU
18 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés