Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Knowledge Base Optimization of the HFRIQ- Learning

Thumbnail
View/Open
Tompa_Kovacs_150.pdf (580.7Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32424
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
The learning process of conventional reinforcement learning methods, such as Q- learning and SARSA typically start with an empty knowledge base. In each iteration step, the initial empty knowledge base is gradually constructed by reinforcement signals obtained from the environment. Even only if a fragment of knowledge is available regarding the system behavior which can be injected into the learning process, the learning performance can be improved. In Heuristically Accelerated Fuzzy Rule Interpolation-based Q-learning (HFRIQ- learning), the external knowledge can be represented in the form of human experts defined state-action fuzzy rules. If the expert knowledge base contains inaccuracies, i.e., incorrect state-action rules, it can negatively impact the learning performance. The main goal of this paper is to introduce a methodology for correcting (optimizing) the inaccurate a priori expert knowledge and as an additional benefit of optimization, to reduce the size of the Q-function representation fuzzy rule-base during the learning phase. The paper also introduces some examples how the quality of expert knowledge influences the HFRIQ-learning performance on a well-known reinforcement learning benchmark problem.
Title
Knowledge Base Optimization of the HFRIQ- Learning
Author
Tompa, Tamás
Kovács, Szilveszter
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
18 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
reinforcement learning, heuristically accelerated reinforcement learning, expert knowledge representation, fuzzy rule interpolation, q-learning, expert rule validation
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.10.2024.10.6
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
10. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - informatikai tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV