Show simple item record

Slimane, Sayah
Mouhoub, Birane
Khalil, Benmouiza
2025-08-11T07:09:29Z
2025-08-11T07:09:29Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32117
This paper introduces a novel approach to control single-phase grid-connected inverters (GCIs) using artificial intelligence (AI), specifically employing a deep learning- based method with Gated Recurrent Unit (GRU) networks. The proposed GRU-based controller is trained offline using TensorFlow and Keras libraries in Python, and is subsequently implemented for real-time applications. Comparative analysis between the GRU-based controller and the conventional PI controller reveals distinct advantages of the former, including improved transient response and reduced oscillations. Furthermore, the GRU-based controller demonstrates superior performance, reducing the total harmonic distortion (THD) and efficiently regulating current in the presence of varying grid conditions.hu_HU
dc.formatPDFhu_HU
enhu_HU
Deep Learning-based Control Perspective for Single-Phase Grid-connected Inverter Using Gated Recurrent Unitshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - multidiszciplináris műszaki tudományokhu_HU
eenewable sourcehu_HU
grid-connected inverterghu_HU
artificial intelligencehu_HU
gated recurrent unithu_HU
total harmonic distortionhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.3.2025.3.14
Kiadói változathu_HU
19 p.hu_HU
3. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record