Deep Learning-based Control Perspective for Single-Phase Grid-connected Inverter Using Gated Recurrent Units

View/ Open
Metadata
Show full item record
URI
Collections
Abstract
This paper introduces a novel approach to control single-phase grid-connected
inverters (GCIs) using artificial intelligence (AI), specifically employing a deep learning-
based method with Gated Recurrent Unit (GRU) networks. The proposed GRU-based
controller is trained offline using TensorFlow and Keras libraries in Python, and is
subsequently implemented for real-time applications. Comparative analysis between the
GRU-based controller and the conventional PI controller reveals distinct advantages of the
former, including improved transient response and reduced oscillations. Furthermore, the
GRU-based controller demonstrates superior performance, reducing the total harmonic
distortion (THD) and efficiently regulating current in the presence of varying grid
conditions.
- Title
- Deep Learning-based Control Perspective for Single-Phase Grid-connected Inverter Using Gated Recurrent Units
- Author
- Slimane, Sayah
- Mouhoub, Birane
- Khalil, Benmouiza
- xmlui.dri2xhtml.METS-1.0.item-date-issued
- 2025
- xmlui.dri2xhtml.METS-1.0.item-rights-access
- Open access
- xmlui.dri2xhtml.METS-1.0.item-identifier-issn
- 1785-8860
- xmlui.dri2xhtml.METS-1.0.item-language
- en
- xmlui.dri2xhtml.METS-1.0.item-format-page
- 19 p.
- xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
- eenewable source, grid-connected inverterg, artificial intelligence, gated recurrent unit, total harmonic distortion
- xmlui.dri2xhtml.METS-1.0.item-description-version
- Kiadói változat
- xmlui.dri2xhtml.METS-1.0.item-identifiers
- DOI: 10.12700/APH.22.3.2025.3.14
- xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
- Acta Polytechnica Hungarica
- xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
- 2025
- xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
- 22. évf.
- xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
- 3. sz.
- xmlui.dri2xhtml.METS-1.0.item-type-type
- Tudományos cikk
- xmlui.dri2xhtml.METS-1.0.item-subject-area
- Műszaki tudományok - multidiszciplináris műszaki tudományok
- xmlui.dri2xhtml.METS-1.0.item-publisher-university
- Óbudai Egyetem