Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning-based Control Perspective for Single-Phase Grid-connected Inverter Using Gated Recurrent Units

Thumbnail
View/Open
Sayah_Birane_Benmouiza_155.pdf (2.764Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32117
Collections
  • Acta Polytechnica Hungarica [181]
Abstract
This paper introduces a novel approach to control single-phase grid-connected inverters (GCIs) using artificial intelligence (AI), specifically employing a deep learning- based method with Gated Recurrent Unit (GRU) networks. The proposed GRU-based controller is trained offline using TensorFlow and Keras libraries in Python, and is subsequently implemented for real-time applications. Comparative analysis between the GRU-based controller and the conventional PI controller reveals distinct advantages of the former, including improved transient response and reduced oscillations. Furthermore, the GRU-based controller demonstrates superior performance, reducing the total harmonic distortion (THD) and efficiently regulating current in the presence of varying grid conditions.
Title
Deep Learning-based Control Perspective for Single-Phase Grid-connected Inverter Using Gated Recurrent Units
Author
Slimane, Sayah
Mouhoub, Birane
Khalil, Benmouiza
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
19 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
eenewable source, grid-connected inverterg, artificial intelligence, gated recurrent unit, total harmonic distortion
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.3.2025.3.14
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
3. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV