Show simple item record

Ha Huy Cuong, Nguyen
Hieu, Ho Phan
Thanh Thuy, Nguyen
Anh Kiet, Tran
Trung, Vo Hung
2025-08-07T07:24:27Z
2025-08-07T07:24:27Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32046
Association Rule Mining (ARM) uncovers meaningful associations within discrete and categorical datasets. This paper introduces an innovative ARM method leveraging the Modified Shuffled Frog Leaping Optimization (MSFLO) technique to enhance performance analysis. By integrating the Apriori algorithm with MSFLO’s bio-inspired optimization, including frog encoding, our approach generates association rules efficiently. Unlike traditional methods requiring multiple database scans, this technique filters data in a single pass, significantly reducing CPU time and memory usage. Multiple optimization measures are applied to refine MSFLO, improving the accuracy and effectiveness of rule extraction. Implemented in MongoDB, the method is validated across six diverse datasets— Watermelon, Mangosteen, Breast, Dragon Fruit, Mango, and Orange—demonstrating superior performance compared to existing approaches. This advancement optimizes computational efficiency and rule quality, offering a robust solution for fruit shape database mining and precision agriculture applications.hu_HU
dc.formatPDFhu_HU
enhu_HU
An Enhanced Data Mining Classification based on Shuffled Frog Leaping Optimizationhu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
apriori methodhu_HU
rule-based mininghu_HU
frog leaping optimizationhu_HU
efficiency enhancementhu_HU
support metrichu_HU
confidence levelhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.5.2025.5.7
Kiadói változathu_HU
19 p.hu_HU
5. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record