Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Enhanced Data Mining Classification based on Shuffled Frog Leaping Optimization

Thumbnail
View/Open
Cuong_Hieu_Thuy_Kiet_Trung_157.pdf (1.909Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32046
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
Association Rule Mining (ARM) uncovers meaningful associations within discrete and categorical datasets. This paper introduces an innovative ARM method leveraging the Modified Shuffled Frog Leaping Optimization (MSFLO) technique to enhance performance analysis. By integrating the Apriori algorithm with MSFLO’s bio-inspired optimization, including frog encoding, our approach generates association rules efficiently. Unlike traditional methods requiring multiple database scans, this technique filters data in a single pass, significantly reducing CPU time and memory usage. Multiple optimization measures are applied to refine MSFLO, improving the accuracy and effectiveness of rule extraction. Implemented in MongoDB, the method is validated across six diverse datasets— Watermelon, Mangosteen, Breast, Dragon Fruit, Mango, and Orange—demonstrating superior performance compared to existing approaches. This advancement optimizes computational efficiency and rule quality, offering a robust solution for fruit shape database mining and precision agriculture applications.
Title
An Enhanced Data Mining Classification based on Shuffled Frog Leaping Optimization
Author
Ha Huy Cuong, Nguyen
Hieu, Ho Phan
Thanh Thuy, Nguyen
Anh Kiet, Tran
Trung, Vo Hung
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
19 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
apriori method, rule-based mining, frog leaping optimization, efficiency enhancement, support metric, confidence level
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.5.2025.5.7
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
5. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - informatikai tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV