Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Debugging Cloud Continuum Blueprint Primitives with an ML-based Steering Method Toward Extreme Conditions

Thumbnail
View/Open
Lovas_157.pdf (738.8Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32041
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
Debugging high-dimensional state spaces in cloud continuum environments poses significant challenges, particularly when investigating extreme conditions such as high latency, competing on resources, or configuration anomalies. This paper presents a novel supervised machine learning-based approach to efficiently assist the debugging process by steering toward potential fault states in an automated way. Leveraging typical blueprint primitives, such as load balancers and temporal data storage in the presented case studies, Multi-Layer Perceptron (MLP) and Dense Neural Networks (DNN) were trained to predict the distance to extreme situations. The trained model informs a traversal mechanism that explores the state space using this heuristic, minimizing the time and consumed resources required to detect actual faults. The first experiments conducted with two foundational blueprint primitives (buffers and multi-tier load balancers) demonstrate the promising effectiveness of the approach in locating potential fault states. By integrating this method into cloud-edge debugging tools, developers can enhance not only fault localization but reliability and performance as well, particularly for extreme timing conditions. Future work will explore a wider set of primitives, as well as adjacency matrix representations and convolutional techniques, to improve applicability, scalability and robustness of the presented solution.
Title
Debugging Cloud Continuum Blueprint Primitives with an ML-based Steering Method Toward Extreme Conditions
Author
Lovas, Robert
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
22 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
cloud computing, cebugging, machine learning, fault detection, markov chains, state space explorations
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.5.2025.5.2
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
5. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV