Rövidített megjelenítés

Çomak, Emre
Gündüz, Gürhan
2025-08-07T06:49:23Z
2025-08-07T06:49:23Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32040
Many studies evaluating the performance of various optimization methods for training Artificial Neural Networks (ANNs) have produced conflicting results. This discrepancy often arises due to the limited application of these methods across a narrow spectrum of ANN architectures and training parameter values. In response to this gap, our study introduces an enhanced Particle Swarm Optimization (PSO) technique, denoted as Reverse Direction Supported Particle Swarm Optimization (RDS-PSO), specifically designed for ANN training. RDS-PSO incorporates two novel parameters, namely alpha and beta, allowing the creation of four distinct RDS-PSO types including the original PSO. Unlike many existing studies, we comprehensively evaluate the performance of these four RDS-PSO types across a diverse set of criteria. These criteria include the architectural space of ANN, training depths for ANN, inertia weight direction for RDS-PSO, and adaptation approaches for the two novel parameters of RDS-PSO. Through 100 iterations for each training case, we conduct an extensive and intricate analysis of ANN training performance on three medical datasets. Our experimental findings reveal that RDS-PSO_3, featuring decreasing inertia weight and cosine adaptation, consistently outperforms other RDS-PSO types. Furthermore, RDS-PSO_3 demonstrates greater reliability, as evidenced by lower standard deviation values, across most ANN architectures.hu_HU
dc.formatPDFhu_HU
enhu_HU
Comparative Analysis of Performances of an Improved Particle Swarm Optimization and a Traditional Particle Swarm Optimization for Training of Neural Network Architecture Spacehu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - multidiszciplináris műszaki tudományokhu_HU
neural network traininghu_HU
global searchinghu_HU
particle swarm optimizationhu_HU
improved particle swarm optimizationhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.5.2025.5.1
Kiadói változathu_HU
24 p.hu_HU
5. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés