Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of Performances of an Improved Particle Swarm Optimization and a Traditional Particle Swarm Optimization for Training of Neural Network Architecture Space

Thumbnail
View/Open
Comak_Gunduz_157.pdf (968.1Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32040
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
Many studies evaluating the performance of various optimization methods for training Artificial Neural Networks (ANNs) have produced conflicting results. This discrepancy often arises due to the limited application of these methods across a narrow spectrum of ANN architectures and training parameter values. In response to this gap, our study introduces an enhanced Particle Swarm Optimization (PSO) technique, denoted as Reverse Direction Supported Particle Swarm Optimization (RDS-PSO), specifically designed for ANN training. RDS-PSO incorporates two novel parameters, namely alpha and beta, allowing the creation of four distinct RDS-PSO types including the original PSO. Unlike many existing studies, we comprehensively evaluate the performance of these four RDS-PSO types across a diverse set of criteria. These criteria include the architectural space of ANN, training depths for ANN, inertia weight direction for RDS-PSO, and adaptation approaches for the two novel parameters of RDS-PSO. Through 100 iterations for each training case, we conduct an extensive and intricate analysis of ANN training performance on three medical datasets. Our experimental findings reveal that RDS-PSO_3, featuring decreasing inertia weight and cosine adaptation, consistently outperforms other RDS-PSO types. Furthermore, RDS-PSO_3 demonstrates greater reliability, as evidenced by lower standard deviation values, across most ANN architectures.
Title
Comparative Analysis of Performances of an Improved Particle Swarm Optimization and a Traditional Particle Swarm Optimization for Training of Neural Network Architecture Space
Author
Çomak, Emre
Gündüz, Gürhan
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
24 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
neural network training, global searching, particle swarm optimization, improved particle swarm optimization
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.5.2025.5.1
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
5. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV