Rövidített megjelenítés

Zhang, Tiantao
Lv, Chengshun
Liu, Jian
Kou, Lei
Xie, Quanyi
Duan, Meidong
Zhang, Xiao
Zhu, Debao
2025-08-07T06:41:58Z
2025-08-07T06:41:58Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32039
Crack detection is critical for guaranteeing the safety of bridges, railways, and other infrastructures; however, it is a difficult task, particularly for tunnels. Tunnel lining images are primarily acquired using vision sensors, and cracks typically appear throughout an entire image. For crack detection using convolutional neural networks, the recognition accuracy is unsatisfactory when the cracks are at the edge of the image. Hence, an image preprocessing method is proposed to process railway tunnel data. In this method, the relative position of cracks in an image is changed by adding different sizes of borders to the crack images, and four different detection models are used for training to examine the effectiveness of the preprocessing method. Experimental results show that the proposed preprocessing method achieves better detection results for all four models. In the custom dataset, the border size is set to 1/9 of the original image size, which is the most effective size for improving edge crack recognition, where a maximum improvement of 8.4% compared with the control group is achieved. Additionally, black pixels (pixel value 0) are used to fill the border, which is better than using white pixels (pixel value 255).hu_HU
dc.formatPDFhu_HU
enhu_HU
A Preprocessing Method to Improve Edge Crack Detection from Railway Tunnel Lining Imageshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - közlekedéstudományokhu_HU
tunnelhu_HU
crack detectionhu_HU
deep learninghu_HU
feature distributionhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.4.2025.4.18
Kiadói változathu_HU
19 p.hu_HU
4. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés