Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Preprocessing Method to Improve Edge Crack Detection from Railway Tunnel Lining Images

Thumbnail
View/Open
Zhang_Lv_Liu_Kou_Xie_Duan_Zhang_Zhu_156.pdf (1.439Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32039
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
Crack detection is critical for guaranteeing the safety of bridges, railways, and other infrastructures; however, it is a difficult task, particularly for tunnels. Tunnel lining images are primarily acquired using vision sensors, and cracks typically appear throughout an entire image. For crack detection using convolutional neural networks, the recognition accuracy is unsatisfactory when the cracks are at the edge of the image. Hence, an image preprocessing method is proposed to process railway tunnel data. In this method, the relative position of cracks in an image is changed by adding different sizes of borders to the crack images, and four different detection models are used for training to examine the effectiveness of the preprocessing method. Experimental results show that the proposed preprocessing method achieves better detection results for all four models. In the custom dataset, the border size is set to 1/9 of the original image size, which is the most effective size for improving edge crack recognition, where a maximum improvement of 8.4% compared with the control group is achieved. Additionally, black pixels (pixel value 0) are used to fill the border, which is better than using white pixels (pixel value 255).
Title
A Preprocessing Method to Improve Edge Crack Detection from Railway Tunnel Lining Images
Author
Zhang, Tiantao
Lv, Chengshun
Liu, Jian
Kou, Lei
Xie, Quanyi
Duan, Meidong
Zhang, Xiao
Zhu, Debao
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
19 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
tunnel, crack detection, deep learning, feature distribution
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.4.2025.4.18
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
4. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - közlekedéstudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV