Rövidített megjelenítés

Sterczl, Gábor
Csiszárik-Kocsir, Ágnes
2025-08-06T07:34:21Z
2025-08-06T07:34:21Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31956
This study aims to comparatively evaluate the performance of currently popular Artificial Intelligence (AI) models in supporting qualitative data analysis, specifically focusing on the coding and hypothesis validation of interview transcripts. We investigate how models from OpenAI, Google Gemini, and Anthropic perform in these tasks compared to traditional manual analysis and established CAQDAS tools. Utilizing transcripts from three exploratory interviews, the methodology involved applying each AI model and selected CAQDAS tools to generate codes and quantify references based on predefined research objectives and a set of established codes. Key findings reveal significant variability in the ability of different AI models to accurately identify and quantify relevant data segments, with some models demonstrating greater efficiency and the capacity to suggest novel, relevant categories not initially identified through manual analysis (e.g., external influences, roles, and responsibilities). Conversely, instances of inaccuracies, such as hallucinated quotes, were observed in other models. The study highlights that while AI offers substantial potential for increasing the efficiency and objectivity of qualitative analysis, its effectiveness is highly dependent on the specific model used and necessitates critical human oversight and validation. The implications underscore the importance of a hybrid human-AI approach in qualitative research, emphasizing careful model selection, robust data management protocols, and continuous attention to ethical considerations, particularly regarding data privacy and algorithmic bias.hu_HU
dc.formatPDFhu_HU
enhu_HU
Comparative Analysis of AI models ‒ Using AI-supported Qualitative Data Analysis for Interview Analysishu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
artificial intelligencehu_HU
qualitative researchhu_HU
GPT 9hu_HU
CAQDAShu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.7.2025.7.12
Kiadói változathu_HU
21 p.hu_HU
7. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés