Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of AI models ‒ Using AI-supported Qualitative Data Analysis for Interview Analysis

Thumbnail
View/Open
Sterczl_CsiszarikKocsir_159.pdf (409.8Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31956
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
This study aims to comparatively evaluate the performance of currently popular Artificial Intelligence (AI) models in supporting qualitative data analysis, specifically focusing on the coding and hypothesis validation of interview transcripts. We investigate how models from OpenAI, Google Gemini, and Anthropic perform in these tasks compared to traditional manual analysis and established CAQDAS tools. Utilizing transcripts from three exploratory interviews, the methodology involved applying each AI model and selected CAQDAS tools to generate codes and quantify references based on predefined research objectives and a set of established codes. Key findings reveal significant variability in the ability of different AI models to accurately identify and quantify relevant data segments, with some models demonstrating greater efficiency and the capacity to suggest novel, relevant categories not initially identified through manual analysis (e.g., external influences, roles, and responsibilities). Conversely, instances of inaccuracies, such as hallucinated quotes, were observed in other models. The study highlights that while AI offers substantial potential for increasing the efficiency and objectivity of qualitative analysis, its effectiveness is highly dependent on the specific model used and necessitates critical human oversight and validation. The implications underscore the importance of a hybrid human-AI approach in qualitative research, emphasizing careful model selection, robust data management protocols, and continuous attention to ethical considerations, particularly regarding data privacy and algorithmic bias.
Title
Comparative Analysis of AI models ‒ Using AI-supported Qualitative Data Analysis for Interview Analysis
Author
Sterczl, Gábor
Csiszárik-Kocsir, Ágnes
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
21 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
artificial intelligence, qualitative research, GPT 9, CAQDAS
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.7.2025.7.12
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
7. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - informatikai tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV