Rövidített megjelenítés

Moorthy, Hema
Kavitha, Iniya
Sadasivam, Iniya Kavitha
Muthusamy, Keerthika
2025-08-06T06:41:54Z
2025-08-06T06:41:54Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31940
This research presents a method to efficiently detect facial tampering in videos, and particularly focuses on two recent techniques, used to generate hyper realistic forged videos: Deepfake and Face2Face. Traditional image forensics techniques are usually not well suited to videos due to the compression that strongly degrades the data. Thus, this work follows a deep learning approach and presents a network, with a smaller number of layers to focus on the mesoscopic properties of images. This work evaluates those fast networks on both an existing dataset and a dataset generated from online videos. Deepfake image detection is important because it helps everyone determine if the pictures seen online are real or fake. Due to advancements in computer vision techniques, people can create fake images that look extremely realistic. These could be used to spread lies or invade someone's privacy. The detection tools use smart technology to spot these fakes, ensuring that everyone can trust the pictures they come across and preventing the spread of misleading or harmful content on the internet. This work contributes to the growing body of research addressing the challenges posed by advanced video manipulation techniques, providing a valuable tool for applications in cybersecurity, media integrity, and the prevention of misinformation in an era dominated by sophisticated visual content manipulation.hu_HU
dc.formatPDFhu_HU
huhu_HU
Enhancing Video Forensics: Deep Learning Approaches to Combat Advanced Video Manipulation Techniqueshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
video forensicshu_HU
deepfake imagehu_HU
Meso4hu_HU
face tamperinghu_HU
fake image detectionhu_HU
cyber securityhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.7.2025.7.4
Kiadói változathu_HU
18 p.hu_HU
7. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés