Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Video Forensics: Deep Learning Approaches to Combat Advanced Video Manipulation Techniques

Thumbnail
View/Open
Ravichandaran_Moorthy_Sadasivam_Muthusamy_159.pdf (1.244Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31940
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
This research presents a method to efficiently detect facial tampering in videos, and particularly focuses on two recent techniques, used to generate hyper realistic forged videos: Deepfake and Face2Face. Traditional image forensics techniques are usually not well suited to videos due to the compression that strongly degrades the data. Thus, this work follows a deep learning approach and presents a network, with a smaller number of layers to focus on the mesoscopic properties of images. This work evaluates those fast networks on both an existing dataset and a dataset generated from online videos. Deepfake image detection is important because it helps everyone determine if the pictures seen online are real or fake. Due to advancements in computer vision techniques, people can create fake images that look extremely realistic. These could be used to spread lies or invade someone's privacy. The detection tools use smart technology to spot these fakes, ensuring that everyone can trust the pictures they come across and preventing the spread of misleading or harmful content on the internet. This work contributes to the growing body of research addressing the challenges posed by advanced video manipulation techniques, providing a valuable tool for applications in cybersecurity, media integrity, and the prevention of misinformation in an era dominated by sophisticated visual content manipulation.
Title
Enhancing Video Forensics: Deep Learning Approaches to Combat Advanced Video Manipulation Techniques
Author
Moorthy, Hema
Kavitha, Iniya
Sadasivam, Iniya Kavitha
Muthusamy, Keerthika
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
hu
xmlui.dri2xhtml.METS-1.0.item-format-page
18 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
video forensics, deepfake image, Meso4, face tampering, fake image detection, cyber security
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.7.2025.7.4
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
7. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - informatikai tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV