Show simple item record

Ospina Alarcón, Manuel Alejandro
Chanchí Golondrino, Gabriel Elías
Úsuga Manco, Liliana María
2025-08-06T06:29:04Z
2025-08-06T06:29:04Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31939
A comprehensive study on the application of machine learning algorithms for dynamic system identification in wastewater treatment plants (WWTP) is presented. The research focuses on developing a flexible neural network model to predict the behavior of key variables in the aeration process of a pilot-scale water treatment plant. The methodology involves data collection from experimental trials, data preprocessing, neural network model development, validation, and implementation. The results demonstrate the effectiveness of the proposed approach in accurately predicting key variables such as dissolved oxygen, tank temperature, and tank level (mean squared error MSE=0.166 and coefficient of determination R2=0.967). The discussion highlights the importance of variable selection, data preprocessing techniques, model architecture design, and validation procedures. The conclusions emphasize the significance of machine learning techniques in optimizing wastewater treatment processes, improving energy efficiency, and facilitating real-time decision making. Recommendations for future research include scaling up the model to larger treatment plants, incorporating advanced deep learning techniques, and continuous validation and optimization of the model.hu_HU
dc.formatPDFhu_HU
enhu_HU
Machine Learning Algorithms for Dynamic System Identification in Wastewater Treatment Planthu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - multidiszciplináris műszaki tudományokhu_HU
wastewater treatmenthu_HU
machine learninghu_HU
artificial neural networkshu_HU
dynamic system identificationhu_HU
aeration processhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.7.2025.7.3
Kiadói változathu_HU
20 p.hu_HU
7. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record