Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Algorithms for Dynamic System Identification in Wastewater Treatment Plant

Thumbnail
View/Open
OspinaAlarcon_ChanchiGolondrino_UsugaManco_159.pdf (737.6Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31939
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
A comprehensive study on the application of machine learning algorithms for dynamic system identification in wastewater treatment plants (WWTP) is presented. The research focuses on developing a flexible neural network model to predict the behavior of key variables in the aeration process of a pilot-scale water treatment plant. The methodology involves data collection from experimental trials, data preprocessing, neural network model development, validation, and implementation. The results demonstrate the effectiveness of the proposed approach in accurately predicting key variables such as dissolved oxygen, tank temperature, and tank level (mean squared error MSE=0.166 and coefficient of determination R2=0.967). The discussion highlights the importance of variable selection, data preprocessing techniques, model architecture design, and validation procedures. The conclusions emphasize the significance of machine learning techniques in optimizing wastewater treatment processes, improving energy efficiency, and facilitating real-time decision making. Recommendations for future research include scaling up the model to larger treatment plants, incorporating advanced deep learning techniques, and continuous validation and optimization of the model.
Title
Machine Learning Algorithms for Dynamic System Identification in Wastewater Treatment Plant
Author
Ospina Alarcón, Manuel Alejandro
Chanchí Golondrino, Gabriel Elías
Úsuga Manco, Liliana María
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
wastewater treatment, machine learning, artificial neural networks, dynamic system identification, aeration process
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.7.2025.7.3
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
7. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV