Extracting Tailings Ponds from High Spatial Resolution Remote Sensing Images using Improved YOLOv5 and SegFormer

Megtekintés/ Megnyitás
Metaadat
Teljes megjelenítés
Link a dokumentumra való hivatkozáshoz:
Gyűjtemény
Absztrakt
Dam failures in tailings ponds pose severe threats to nearby ecosystems,
residents' lives, and property. Therefore, accurately and efficiently extracting information
on tailings ponds is essential. Remote sensing technology has become a crucial tool for
periodic and precise detection of these ponds. However, tailings ponds vary significantly in
color, scale, and shape, often blending with their surroundings, which limits the
effectiveness of traditional remote sensing methods. In this paper, we propose a framework
for extracting tailings ponds from high-resolution remote sensing images using an
improved YOLOv5 and SegFormer. Our improved YOLOv5 incorporates the coordinate
attention (CA) and Transformer attention mechanisms into the C3 module of the backbone,
creating new C3CA and C3TR modules that form a hybrid attention mechanism backbone.
For the neck network, we build on YOLOv6's Bi-directional Concatenation (BiC) module,
replacing the nearest-neighbor interpolation with transposed convolution, and designing a
new BiCT module to create the BiC Transposed Convolution Path Aggregation Network
(BiCTPAN). Following detection by the improved YOLOv5, SegFormer is used to
accurately delineate tailings pond boundaries. The results show that the improved
YOLOv5s achieves an mAP@0.5 of 90.10%, a 4.8% increase over the original YOLOv5s,
with minimal impact on parameters and Floating-Point Operations per Second (FLOPs).
The SegFormer model achieves an Intersection over Union (IoU) of 87.45% and an
accuracy of 94.1%, demonstrating excellent extraction performance.
- Cím és alcím
- Extracting Tailings Ponds from High Spatial Resolution Remote Sensing Images using Improved YOLOv5 and SegFormer
- Szerző
- Sun, Zhenhui
- Sun, Yunxiao
- Meng, Qingyan
- Jancsó, Tamás
- Megjelenés ideje
- 2025
- Hozzáférés szintje
- Open access
- ISSN, e-ISSN
- 1785-8860
- Nyelv
- en
- Terjedelem
- 20 p.
- Tárgyszó
- tailings pond, YOLOv5s, attention mechanism, SegFormer
- Változat
- Kiadói változat
- A cikket/könyvrészletet tartalmazó dokumentum címe
- Acta Polytechnica Hungarica
- A forrás folyóirat éve
- 2025
- A forrás folyóirat évfolyama
- 22. évf.
- A forrás folyóirat száma
- 8. sz.
- Műfaj
- Tudományos cikk
- Tudományterület
- Műszaki tudományok - multidiszciplináris műszaki tudományok
- Egyetem
- Óbudai Egyetem