Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extracting Tailings Ponds from High Spatial Resolution Remote Sensing Images using Improved YOLOv5 and SegFormer

Thumbnail
View/Open
Sun_Sun_Meng_Jancso_160.pdf (1.821Mb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31929
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
Dam failures in tailings ponds pose severe threats to nearby ecosystems, residents' lives, and property. Therefore, accurately and efficiently extracting information on tailings ponds is essential. Remote sensing technology has become a crucial tool for periodic and precise detection of these ponds. However, tailings ponds vary significantly in color, scale, and shape, often blending with their surroundings, which limits the effectiveness of traditional remote sensing methods. In this paper, we propose a framework for extracting tailings ponds from high-resolution remote sensing images using an improved YOLOv5 and SegFormer. Our improved YOLOv5 incorporates the coordinate attention (CA) and Transformer attention mechanisms into the C3 module of the backbone, creating new C3CA and C3TR modules that form a hybrid attention mechanism backbone. For the neck network, we build on YOLOv6's Bi-directional Concatenation (BiC) module, replacing the nearest-neighbor interpolation with transposed convolution, and designing a new BiCT module to create the BiC Transposed Convolution Path Aggregation Network (BiCTPAN). Following detection by the improved YOLOv5, SegFormer is used to accurately delineate tailings pond boundaries. The results show that the improved YOLOv5s achieves an mAP@0.5 of 90.10%, a 4.8% increase over the original YOLOv5s, with minimal impact on parameters and Floating-Point Operations per Second (FLOPs). The SegFormer model achieves an Intersection over Union (IoU) of 87.45% and an accuracy of 94.1%, demonstrating excellent extraction performance.
Title
Extracting Tailings Ponds from High Spatial Resolution Remote Sensing Images using Improved YOLOv5 and SegFormer
Author
Sun, Zhenhui
Sun, Yunxiao
Meng, Qingyan
Jancsó, Tamás
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
20 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
tailings pond, YOLOv5s, attention mechanism, SegFormer
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
8. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV