Rövidített megjelenítés

Mahalegi Homayoun, Safarpour Motealegh
2025-07-07T11:13:37Z
2025-07-07T11:13:37Z
2024-10-25
2560-2810hu_HU
http://hdl.handle.net/20.500.14044/30330
Predicting student adaption is a crucial component of studying online learning material. Machine learning algorithms are crucial in this situation. Deep learning is a fundamental concept in machine learning algorithms. This work used Python in the Jupyter Notebook environment to implement the deep learning approach for forecasting students' adaptation to online learning. The Keras and Tensorflow libraries were used to construct a neural network model using the Kaggle dataset. The data is divided into testing data and training sets and utilize the Keras plot_model utility method to visualize the neural network model. Construct the deep learning model with two hidden layers, each employing randomly picked activation functions from relu, sigmoid, tanh, elu, and selu. Additionally, include one output layer with the softmax activation function. After undergoing a fine-tuning procedure until the alterations stabilized, this model achieved an accuracy of 89.63%.hu_HU
dc.formatPDFhu_HU
enhu_HU
Optimizing Neural Network Hyperparameters Using Genetic Algorithms for Predicting Student Adaptability in Online Educationhu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Bánki Donát Gépész és Biztonságtechnikai Mérnöki Karhu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - multidiszciplináris műszaki tudományokhu_HU
Evolutionary Algorithmshu_HU
Neural Network Optimizationhu_HU
Adaptive Learning Systemshu_HU
Educational Data Mininghu_HU
Hyperparameter Tuninghu_HU
Predictive Analyticshu_HU
Automated Machine Learninghu_HU
Student Adaptabilityhu_HU
Tudományos cikkhu_HU
Bánki Közleményekhu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
Nagy, István
Kiadói változathu_HU
6 p.hu_HU
2. sz.hu_HU
6. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés