Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Bánki közlemények
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Bánki közlemények
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing Neural Network Hyperparameters Using Genetic Algorithms for Predicting Student Adaptability in Online Education

Thumbnail
View/Open
pub_214_pp43-48.pdf (629.3Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/30330
Collections
  • Bánki közlemények [136]
Abstract
Predicting student adaption is a crucial component of studying online learning material. Machine learning algorithms are crucial in this situation. Deep learning is a fundamental concept in machine learning algorithms. This work used Python in the Jupyter Notebook environment to implement the deep learning approach for forecasting students' adaptation to online learning. The Keras and Tensorflow libraries were used to construct a neural network model using the Kaggle dataset. The data is divided into testing data and training sets and utilize the Keras plot_model utility method to visualize the neural network model. Construct the deep learning model with two hidden layers, each employing randomly picked activation functions from relu, sigmoid, tanh, elu, and selu. Additionally, include one output layer with the softmax activation function. After undergoing a fine-tuning procedure until the alterations stabilized, this model achieved an accuracy of 89.63%.
Title
Optimizing Neural Network Hyperparameters Using Genetic Algorithms for Predicting Student Adaptability in Online Education
Author
Mahalegi Homayoun, Safarpour Motealegh
xmlui.dri2xhtml.METS-1.0.item-contributor-institution
Nagy, István
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024-10-25
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
2560-2810
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
6 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
Evolutionary Algorithms, Neural Network Optimization, Adaptive Learning Systems, Educational Data Mining, Hyperparameter Tuning, Predictive Analytics, Automated Machine Learning, Student Adaptability
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Bánki Közlemények
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
6. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
2. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem
xmlui.dri2xhtml.METS-1.0.item-publisher-faculty
Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV