Rövidített megjelenítés

Balla, T.
Csirik, J.
Dósa, Gy.
Kószó, D.
2025-08-21T07:20:42Z
2025-08-21T07:20:42Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32515
We will consider a power function variant of online scheduling with machine cost. Here, we have a sequence of independent jobs with positive real sizes. Jobs come one by one and we have to assign them irrevocably to a machine without any knowledge about additional jobs that may follow later on. With this problem the algorithm has no machine at first. When a job arrives, we have the option to purchase a new machine and the cost of purchasing a machine is a fixed constant. In previous studies, the objective was to minimize the sum of the makespan and the cost of the purchased machines. In this paper, we minimize the sum of the rth power of loads of the machines (r ≥ 2 is an integer) and the cost of purchasing the machines. The cost of a new machine is 1. We prove that no online algorithm has a competitive ratio smaller than 2 − 2r−1 2r −1 for this problem. Moreover, for r = 2, 3, 4 we present a 2 − 2r−1 2r −1 -competitive online algorithm with a detailed competitive analysis which applies the bin packing algorithm First Fit as a slave algorithm.hu_HU
dc.formatPDFhu_HU
enhu_HU
Online scheduling with machine cost and a power function objectivehu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - anyagtudományok és technológiákhu_HU
schedulinghu_HU
online algorithmshu_HU
analysis of algorithms;hu_HU
power function objectivehu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.30
Kiadói változathu_HU
21 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés