Rövidített megjelenítés

Pozna, Claudiu
Precup, Radu-Emil
Ballagi, Aron
2025-08-19T08:35:47Z
2025-08-19T08:35:47Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32420
The causal network is a possible description of complex phenomena, and several domains, for example, Machine Learning, Social Science, and Artificial Intelligence. Although a successful solution is referred to in this paper, the field inherently faces challenges. Among these, the work identified that the formalism used is time-consuming and difficult to understand. Consequently, the approach proposed in this paper consists in transcribing this formalism in a tensor form. This goal is accomplished in three steps: first common tensor formulas are proposed for direct and inverse models; second these formulas are adapted for the network primitives; in the end the primitive and consequently the formula composition is analysed. To facilitate the understanding of the proposed formalism, the paper describes several examples. This paper is dedicated to Prof. Imre J. Rudas, to celebrate his 75 th anniversary.hu_HU
dc.formatPDFhu_HU
enhu_HU
Using Tensor-Type Formalism in Causal Networkshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
causal networkshu_HU
formalismhu_HU
tensorshu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.5
Kiadói változathu_HU
17 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés