Rövidített megjelenítés

Kuti, József
Galambos, Péter
2025-08-19T08:28:12Z
2025-08-19T08:28:12Z
2024
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/32417
Filtering and sensor fusion are critical tasks in advanced engineering applica- tions, especially in robotics and autonomous vehicles. It is a general problem that the high accuracy and low computational cost are mutually exclusive in such filtering algorithms. The Unscented Kalman-Filter (UKF) is a golden mean between the Extended Kalman- Filter (EKF) and the Particle Filter. Recently, the authors have proposed a generic com- putational relaxation for the EKF that provides options to decrease the computational cost by exploiting the partially linear nature of the mappings in the system model. This pa- per introduces an open-source C++ RelaxedUnscentedTransformation library that fully implements the proposed method. Since the technique offers several independent usage options, different components are implemented, and the corresponding use cases are il- lustrated through examples. Via numerical tests, the paper shows that the implementation can significantly decrease computational costs and even provide an opportunity to in- crease filtering accuracy.hu_HU
dc.formatPDFhu_HU
enhu_HU
Modular C++ Library for Relaxed Unscented Kalman-Filteringhu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
filteringhu_HU
kalman filtershu_HU
sensor fusionhu_HU
sensor fusionhu_HU
unscented transformationhu_HU
unscented kalman-filterhu_HU
computational relaxationhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.21.10.2024.10.4
Kiadói változathu_HU
18 p.hu_HU
10. sz.hu_HU
21. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés