Dynamic Modeling and Optimization of Permanent Magnet Synchronous Electrical Machine Propulsion Powertrain at Different Modeling Levels

Megtekintés/ Megnyitás
Metaadat
Teljes megjelenítés
Link a dokumentumra való hivatkozáshoz:
Gyűjtemény
Absztrakt
Electric vehicles (EVs) have emerged as a compelling solution to mitigate
environmental concerns and meet the growing demand for energy-efficient transportation
systems. The careful selection of the electric motor is critical in determining the overall
performance of the EV. This paper uses an EV from the University of Debrecen as a reference
to comprehensively study the feasibility of using a permanent magnet brushless direct current
(PMBLDC) motor in the vehicle. The optimal performance of the overall powertrain is
realized based on a proportional integral and derivative (PID) controller. The advanced
nonlinear dynamics of the system make the performance of the control algorithm unrealistic.
The PID is optimized based on a genetic algorithm (GA-PID) to address this limitation and
achieve optimal performance. The integral performance indices are used as a fitness value
for the optimization problem. However, MATLAB/Simulink/Simscape is used to
comprehensively investigate and compare the simplified and advanced models of a three-
phase, four-pole, Y-connected PMBLDC motor in the EV application. The simulation results
indicate that the proposed electrical machine is promising in EVs, achieving 90.90 % energy
efficiency, thereby decreasing the energy consumption by 11.12 % compared to the measured
real-world results. This research contributes significantly to energy efficiency, power
efficiency, and thermal performance, offering invaluable insights into the optimal selection
and modeling of PMBLDC motors at varying complexity levels in EVs. Ultimately, this study
steers the industry towards a more sustainable and environmentally conscious trajectory.
- Cím és alcím
- Dynamic Modeling and Optimization of Permanent Magnet Synchronous Electrical Machine Propulsion Powertrain at Different Modeling Levels
- Szerző
- Ghareeb, Abdullah Waheeb Jaffer Omer
- Babangida, Aminu
- Szemes, Péter Tamás
- Megjelenés ideje
- 2025
- Hozzáférés szintje
- Open access
- ISSN, e-ISSN
- 1785-8860
- Nyelv
- en
- Terjedelem
- 23 p.
- Tárgyszó
- advanced powertrain, EVs, genetic algorithm, PID, PMBLDC Motor
- Változat
- Kiadói változat
- Egyéb azonosítók
- DOI: 10.12700/APH.22.3.2025.3.3
- A cikket/könyvrészletet tartalmazó dokumentum címe
- Acta Polytechnica Hungarica
- A forrás folyóirat éve
- 2025
- A forrás folyóirat évfolyama
- 22. évf.
- A forrás folyóirat száma
- 3. sz.
- Műfaj
- Tudományos cikk
- Tudományterület
- Műszaki tudományok - multidiszciplináris műszaki tudományok
- Egyetem
- Óbudai Egyetem