Show simple item record

Monsone, R. Cristina
Csapó, B. Ádám
2025-08-06T08:27:00Z
2025-08-06T08:27:00Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31976
In this paper, we explore the utility of classical neural network-based approaches, originally designed for processing 2D images, in semantic segmentation and object recog- nition tasks within the context of 3D point cloud images generated from handheld video recordings. Our investigation centers around the use of a custom-created, small-sized training dataset, consisting of 108 RGB images of humans and cobots in diverse industrial settings. This dataset allows us to demonstrate that flexible segmentation and recognition applications can be built even with a restricted dataset developed using widely available low-cost tools and modern convolutional neural net architectures. Downstream benefits of the approach include the ability to detect humans and human gestures, as well as to rapidly prototype digital twins in Industry 5.0 environments.hu_HU
dc.formatPDFhu_HU
enhu_HU
Instance Segmentation in Industry 5.0 Applications Based on the Automated Generation of Point Cloudshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Műszaki tudományok - informatikai tudományokhu_HU
industrial image datasetshu_HU
point-cloud generationhu_HU
convolutional neural networkshu_HU
instance segmentationhu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
10.12700/APH.22.6.2025.6.2
Kiadói változathu_HU
22 p.hu_HU
6. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record