Rövidített megjelenítés

Harmati, Barbara
Pődör, Andrea
Tick, Andrea
2025-08-06T06:05:48Z
2025-08-06T06:05:48Z
2025
1785-8860hu_HU
http://hdl.handle.net/20.500.14044/31935
Crime detection with high prediction and accuracy has become a focused issue in the process of crime investigation and prevention. The higher the accuracy or precision of a crime detection model the more efficient crime investigation and prevention becomes. The present research aims to examine the possible precision and accuracy differences of using two different test datasets (TD) to calculate the predictive accuracy index (PAI), and the recapture rate index (RRI) for kernel density estimation (KDE), risk terrain modeling (RTM) and the combined RTM–KDE model. The present study focuses on theft and robbery cases of between 1 December 2015 and 30 November 2018 in Budapest, Hungary. The novelty of the research lies in its first-time usage in Budapest, in a Central European evolutionary urban structure. The results show that there are differences in prediction performance and in each model using a Test Dataset (TD) more distant in time from the initial dataset resulted in a more accurate prediction. The research proved that datasets with different time distances can have an impact on the predictive accuracy and precision of crime detection.hu_HU
dc.formatPDFhu_HU
enhu_HU
Time's Effect on Crime Prediction Precision and Accuracyhu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Óbudai Egyetemhu_HU
Társadalomtudományok - szociológiai tudományokhu_HU
evolutionary urban structurehu_HU
geoinformaticshu_HU
kernel density estimationhu_HU
predictive accuracy indexhu_HU
recapture rate indexhu_HU
risk terrain modellinghu_HU
spatial analysishu_HU
Tudományos cikkhu_HU
Acta Polytechnica Hungaricahu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
Kiadói változathu_HU
21 p.hu_HU
8. sz.hu_HU
22. évf.hu_HU
2025hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés