Mapping of Soil Moisture Variability, Using the Sentinel-2 Data Optical-Trapezoid Approach

Megtekintés/ Megnyitás
Metaadat
Teljes megjelenítés
Link a dokumentumra való hivatkozáshoz:
Gyűjtemény
Absztrakt
Understanding soil moisture is crucial in various aspects of daily life and
scientific pursuits. Among these, knowledge about water stress conditions holds particular
significance for both agriculture and soil conservation. The objective of this research is to
explore the application of satellite imagery in the cartography and surveillance of moisture
levels within an agricultural region. Soil moisture content was assessed using the optical
trapezoid model (OPTRAM). Developed by Sadeghi et al. (2015), the OPtical TRApezoidal
model (OPTRAM) was designed to gauge soil water content (SWC) by assuming a linear
correlation between soil moisture content and shortwave transformed reflectance (STR).
The parameters essential for calculating moisture content were identified by scrutinizing
pixel distribution in the STR-NDVI (Normalized Difference Vegetation Index) space.
The examination period spanned from April to October 2021. The models were employed to
compute the spatial fluctuation of soil moisture and its deviation for three satellite images
during the summer of 2021.
The study site was located in Hungary's Bács-Kiskun county, encompassing agricultural
fields with a total expanse of 5500 km2. The study region exhibited variability in terms of
soil composition and topography. Meteorological parameters recorded at 19 stations
within a drought monitoring network, along with soil moisture measurements at different
depths, were also taken into account. To validate the data obtained from the soil moisture
sensor and model, soil samples were collected at a depth of 10 cm for laboratory moisture
assessments. The present condition can be depicted through the analysis of a spatial image,
while time series analyses enable continuous monitoring of soil moisture. The eCognition
software environment, employing the object-based (OBIA) approach, was used to process
satellite data. Statistical methods were utilized to establish correlations between the
datasets measured at the site and estimated from satellite images.
- Cím és alcím
- Mapping of Soil Moisture Variability, Using the Sentinel-2 Data Optical-Trapezoid Approach
- Szerző
- Verőné Wojtaszek, Malgorzata
- Vass, László
- Megjelenés ideje
- 2025
- Hozzáférés szintje
- Open access
- ISSN, e-ISSN
- 1785-8860
- Nyelv
- en
- Terjedelem
- 14 p.
- Tárgyszó
- satellite images, Sentinel2, image processing, soil moisture, OPTRAM model, eCognition
- Változat
- Kiadói változat
- Egyéb azonosítók
- DOI: 10.12700/APH.22.8.2025.8.5
- A cikket/könyvrészletet tartalmazó dokumentum címe
- Acta Polytechnica Hungarica
- A forrás folyóirat éve
- 2025
- A forrás folyóirat évfolyama
- 22. évf.
- A forrás folyóirat száma
- 8. sz.
- Műfaj
- Tudományos cikk
- Tudományterület
- Műszaki tudományok - anyagtudományok és technológiák
- Egyetem
- Óbudai Egyetem