Rövidített megjelenítés

Douzi, Ahmed
Lukacs, Judit
2025-03-31T08:41:37Z
2025-03-31T08:41:37Z
2024-12-30
2064-2520hu_HU
http://hdl.handle.net/20.500.14044/28583
This paper provides an overview of the potential use of Neuro-Fuzzy Systems (NFS) in safeguarding autonomous vehicles (AVs) against cyber-attacks. As innovative technology continues to permeate various aspects of daily life, the integration of advanced technologies, such as Artificial Neural Networks (ANN) and fuzzy inference systems (FIS), holds promise for enhancing the security of intelligenttransport systems. With the increasing prominence of autonomous vehicles and self-driving cars in smart city systems, it is imperative to address vulnerabilities that may compromise their security. Existing vulnerabilities, including insecure applications and data-gatheringvulnerabilities, pose significant obstacles to the widespread adoption of this technology. The potential consequences of security breaches in autonomous vehicles, such as endangering the lives of individuals both inside and outside of the vehicle, underscore the critical need for comprehensive security measures. By leveraging NFS, this study explored the feasibility of mitigating cyber-attacks targeting AVs, thereby bolstering their security and resilience against malicious intrusions.hu_HU
dc.formatPDFhu_HU
enhu_HU
Creating a Secure Autonomous Vehicle System Using a Neuro-Fuzzy System that Merges Artificial Neural Networks and Fuzzy Interface Systemshu_HU
Open accesshu_HU
Óbudai Egyetemhu_HU
Budapesthu_HU
Ybl Miklós Építéstudományi Karhu_HU
Óbudai Egyetemhu_HU
Művészetek - építőművészethu_HU
neuro-Fuzzy systemhu_HU
autonomous vehicleshu_HU
cyber-attackshu_HU
artificial neural networkhu_HU
fuzzy interfacehu_HU
electronic control unitshu_HU
Tudományos cikkhu_HU
YBL Journal of Built Environmenthu_HU
local.tempfieldCollectionsFolyóiratcikkekhu_HU
Kiadói változathu_HU
9 p.hu_HU
2. sz.hu_HU
9. évf.hu_HU
2024hu_HU
Óbudai Egyetemhu_HU


A dokumentumhoz tartozó fájlok

Thumbnail

A dokumentum a következő gyűjtemény(ek)ben található meg

Rövidített megjelenítés