Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Assessment of Physical and Machine Learning Models for Wind Power Estimation: A Case Study for Hungary

Thumbnail
View/Open
Gerse_Dineva_Fleiner_150.pdf (664.4Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32448
Collections
  • Acta Polytechnica Hungarica [175]
Abstract
In the context of the planned mid-term development of wind power plants in Hungary, the authors evaluated the applicability of a physical-based model and several machine-learning models for wind power production estimation and wind resource availability assessments based on wind speed time series retrieved from climate reanalysis. While the physical-based model relies on a national wind power plant database and follows a bottom-up approach transforming wind speed time series into aggregate power output by using type-specific power curves, the machine learning models estimate the aggregate wind power production directly from climate data. Three types of machine learning models are trained and tested: a conventional Recurrent Neural Network (RNN) model, a Long Short- Term Memory (LSTM) model, a Support Vector Regression (SVR) model. The modelling performance is evaluated against historical aggregate wind power generation data. Machine learning models achieved similar performance metrics when compared to the physical-based model. However, different use cases can be attributed to the different types of models, considering the availability of training data sets for machine learning models. A specific use case is demonstrated for the physical-based model, where the existing set of wind turbines was extended by additional, hypothetical wind turbines. This allows for analyzing the impact of geographic distribution on expected wind resource availability for different development scenarios.
Title
Comparative Assessment of Physical and Machine Learning Models for Wind Power Estimation: A Case Study for Hungary
Author
Gerse, Ágnes
Dineva, Adrienn
Fleiner, Rita
xmlui.dri2xhtml.METS-1.0.item-date-issued
2024
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
18 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
renewable energy, wind power, machine learning, physical-based model, wind speed time series, climate data
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.21.10.2024.10.13
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2024
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
21. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
10. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - multidiszciplináris műszaki tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV