Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Body Conformation Scoring of Cattle, using Machine Learning

Thumbnail
View/Open
Tarr_Szabo_Tozser_155.pdf (480.2Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32102
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
Precision agriculture brings new artificial intelligence techniques closer to everyday farming. Agriculture historical data is easily available, so using this data to teach a machine-learning model, offers various opportunities to enhance farming efficiency. In our study, we develop a machine learning model to estimate some linear traits of Limousin sires (sore for muscularity, length of the rump, muscularity of breast and muscularity of the width of rump), based on a phenotypic score, using artificial intelligence, in Hungary. Phenotypic scores are usually given by the experts in field. Before scoring, many measurements are made on the animals, which takes time and places a high stress on the cattle. A hands-on prediction application can make the whole process faster, and more comparable, regardless of the expert who created the scoring. We found that after collecting sufficient data from previous observations it is possible to train specifically selected artificial intelligence (AI) algorithms to predict linear traits in Limousin breeding bulls. Machine learning (ML) was used to predict the score values for muscularity, length of the rump, muscularity of the breast and muscularity of the width of the rump for this study. We found no similar experiments for the usage of AI algorithms to predict these variables. The coefficient of determination (R 2) of the algorithm, in this study, provided the following range values: (R 2=0.77 to 0.86).
Title
Body Conformation Scoring of Cattle, using Machine Learning
Author
Tarr, Bence
Szabó, István
Tőzsér, János
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
12 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
artificial intelligence, machine learning, Limousin, bulls, type traits
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.3.2025.3.2
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
3. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Agrártudományok - állattenyésztési tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV