Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Not Small - Not Big Data: the Missing Size in the Data Spectrum

Thumbnail
View/Open
Schmidt_Krcova_Zelinova_Simonka_157.pdf (403.4Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/32049
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
This paper addresses the classification of data sets that do not fit into the traditional categories of Small Data or Big Data, introducing an intermediate category called Not-Small-Not-Big Data (NoS-NoB Data). Understanding and effectively handling NoS-NoB Data is crucial for various fields of data science, as it encompasses structured, semi-structured, and unstructured information that challenges conventional computing environments due to hardware and software limitations. NoS-NoB Data is primarily defined by its volume, which surpasses the capacity of standard office tools yet does not necessitate the complexity of distributed big data technologies. Typically ranging from tens of gigabytes to several terabytes, such data require specialized processing approaches, including advanced database management systems and programming languages with dedicated data analysis libraries. Processing NoS-NoB Data effectively demands a combination of relational databases, NoSQL solutions, and computational tools such as Python, R, and, in some cases, Hadoop or Spark, depending on specific analytical requirements. The application domains of NoS-NoB Data span various industries, including small and medium enterprises (SMEs), healthcare, education, retail, financial services, logistics, and public administration. This study summarises the fundamental distinctions between data categories based on volume, structure, processing methods, and technological requirements. Additionally, a visual representation illustrates the relationships between Small Data, NoS- NoB Data, and Big Data, highlighting the overlap between categories and the proportional representation of structured, semi-structured, and unstructured data.
Title
Not Small - Not Big Data: the Missing Size in the Data Spectrum
Author
Schmidt, Peter
Krčová, Ingrid
Zelinová, Silvia
Simonka, Zsolt
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
18 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
small data, big data, not-small-not-big data, intermediate data, data science, data processing, NoSQL, python, hadoop
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.5.2025.5.8
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
5. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Természettudományok - matematika- és számítástudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV