Óbudai Egyetem Digitális Archívum
    • magyar
    • English
  • English 
    • magyar
    • English
  • Login
View Item 
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
  •   DSpace Home
  • 5. Folyóiratcikkek
  • Acta Polytechnica Hungarica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NTC-CIL: Characterizing and Classifying Encrypted Network Traffic using Class- Incremental Learning

Thumbnail
View/Open
Gudla_Vollala_Amin_Abdussami_159.pdf (934.8Kb)
Metadata
Show full item record
URI
http://hdl.handle.net/20.500.14044/31958
Collections
  • Acta Polytechnica Hungarica [200]
Abstract
In the field of network security and management, accurately identifying and managing encrypted traffic is essential for mitigating potential attacks and optimizing resource usage. However, conventional methods often underperform in adapting to new traffic classes, require more manual intervention, time-consuming, and resource-intensive. These limitations reduce system performance and increase vulnerability issues. Conventional models also face scalability issues and are prone to catastrophic forgetting, where previously learned traffic patterns are lost as new ones are introduced, leading to reduced classification accuracy over time. To address these challenges, we propose a novel method: Network Traffic Classification using Class-Incremental Learning (NTC-CIL). NTC-CIL combines a random forest classifier with the Learning without Forgetting (LwF) method, an incremental learning method based on knowledge distillation. This approach enables the model to retain previously learned patterns while incorporating new traffic classes, including encrypted and evolving types. As a result, NTC-CIL can continuously adapt to unfamiliar network traffic without retraining from scratch. Experimental evaluations demonstrate that NTC-CIL outperforms existing techniques by achieving an accuracy of 97%. This marks a significant advancement for network security, offering a scalable and adaptive solution capable of detecting new threats in dynamic traffic environments.
Title
NTC-CIL: Characterizing and Classifying Encrypted Network Traffic using Class- Incremental Learning
Author
Gudla, Raju
Vollala, Satyanarayana
Amin, Ruhul
Abdussami, Mohammad
xmlui.dri2xhtml.METS-1.0.item-date-issued
2025
xmlui.dri2xhtml.METS-1.0.item-rights-access
Open access
xmlui.dri2xhtml.METS-1.0.item-identifier-issn
1785-8860
xmlui.dri2xhtml.METS-1.0.item-language
en
xmlui.dri2xhtml.METS-1.0.item-format-page
18 p.
xmlui.dri2xhtml.METS-1.0.item-subject-oszkar
encrypted traffic, class-Incremental learning (CIL), learning without forgetting (LwF), random forest classifier, traffic classification
xmlui.dri2xhtml.METS-1.0.item-description-version
Kiadói változat
xmlui.dri2xhtml.METS-1.0.item-identifiers
DOI: 10.12700/APH.22.7.2025.7.13
xmlui.dri2xhtml.METS-1.0.item-other-containerTitle
Acta Polytechnica Hungarica
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalYear
2025
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalVolume
22. évf.
xmlui.dri2xhtml.METS-1.0.item-other-containerPeriodicalNumber
7. sz.
xmlui.dri2xhtml.METS-1.0.item-type-type
Tudományos cikk
xmlui.dri2xhtml.METS-1.0.item-subject-area
Műszaki tudományok - informatikai tudományok
xmlui.dri2xhtml.METS-1.0.item-publisher-university
Óbudai Egyetem

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV