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Abstract: The paper presents an improved Simultaneous Localization and Mapping (iSLAM) 
and 3D reconstruction system for a mobile robot carrying an RGB-D camera. The developed 
system generates a three-dimensional point cloud from the color and depth camera data of 
the RGB-D camera. The matching is performed on successive point clouds that partially 
overlap. After feature detection on the color camera images, the method selects the 3D points 
in the successive point clouds that belong together. During the iterative multi-step matching 
algorithm based on Singular Value Decomposition (ISVD), it minimizes the matching error 
between the selected point clouds and deletes non-real point pairs in the process. Our 
previous SLAM method has been improved in several ways. On the one hand, a conditional 
averaging filter (Distance Image Filter: DIF) was created for the depth camera data to 
reduce the noise. The matching algorithm iteratively determines the matching transformation 
and the estimated displacement from the feature points of several recent point cloud 
segments. It defines a parameter for the accuracy and quality of each matching and includes 
the sub-results of pairs in the final displacement estimate by weighting these accuracy 
parameters. In this way, the algorithm yields significantly improved accuracy values, which 
in all cases are of comparable magnitude to those of methods in the literature, and for some 
published test sets exceed their characteristics. Since parallel programming methods are 
used to run the fits to previous states, the operation runtime remains fast. If the robot returns 
to its previous location, the improved loop closure detection method detects this fact, refines 
the estimates, and improves the accuracy. Finally, the proposed system also produces a 3D 
point cloud of the environment. 

Keywords: mobile robot navigation; simultaneous localization and mapping; loop-closure 
detection; 3D reconstruction; RGB-D sensor 

1 Introduction 

Today, autonomous mobile robots are becoming more and more common and can 
be found in more areas of life. Depending on their task, they need to recognize their 
environment, detect obstacles, and determine their position. Research on robot 
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navigation uses different sensors. Machine vision is a common approach for sensing 
the environment. The mobile robot may not have a map of the environment 
beforehand, so it has to create one on-the-fly based on the information gathered 
from the area explored. When navigation involves both learning about the 
environment and determining one’s position, the navigation procedure is called 
Simultaneous Localization and Mapping (SLAM) [1]. 

Indoor navigation does not allow the use of absolute positioning systems such as 
GPS, which significantly facilitates positioning over a larger area. However, 
building an absolute localization system indoors is possible, but this requires using 
other sensors. Recently, more and more sensors have become available for machine 
vision systems, such as the Xtion, PrimeSense, and Kinect sensors. Despite their 
simpler design, they have sufficient accuracy to detect the environment of a small 
robot. They can be used to create a detailed 3D map of the vehicle’s environment. 
RGB-D and stereo cameras or LIDAR are primary sensors in many research 
projects [1]. This paper focuses on methods for indoor localization and presents an 
improved SLAM system for indoor use. 

In the case of the SLAM system and 3D reconstruction procedure described in this 
article, no pre-installed external sensor system is required. The system determines 
the motion estimation using data from an RGB-D camera mounted on the mobile 
robot. In previous works [2, 3], we compared our in-house developed structured 
light-based sensor to the MS Kinect device investigating their accuracy. The here 
discussed method is an improved version of our previous SLAM system [4, 5], for 
which a dedicated framework has been developed [6]. The framework allows the 
algorithm to be tested on other public datasets in addition to the data recorded in 
our environment. In our tests, we used the datasets TUM [7] and POZNAN [8], 
which are commonly used in the literature. Our current system provides a more 
accurate estimation of the displacement, and its operation is more robust than the 
previous one due to the improved matching procedure and the real-time loop-
closure algorithm. Using the TUM datasets the proposed method was compared 
with the work of Guclu et al. [9], Whelan et al. [10], Liu et al. [11], Endres et al. 
(RGB-D SLAM) [12], and Stückler et al. MRSMap system [13], and in more cases 
we obtained better values than similar previous works. 

The paper is organized as follows: Section 2 presents similar approaches and the 
methods used therein concisely. Section 3 presents the architecture of our SLAM 
system, 3D point cloud indexing, feature point determination, and as a novelty, the 
algorithm of an improved position estimation procedure and an efficient method for 
loop-closure detection. Section 4 describes the evaluation of the implemented 
system, both on our test database and on two external databases that provide a 
comparison with similar systems. Finally, the conclusion summarizes the results of 
the development. 
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2 Related Work 

Stand-alone SLAM systems, where there is no need to install external sensors, use 
different sensor types. The simpler two-dimensional LIDAR systems have lower 
power requirements and can process sensor data at high-speed. 2D SLAM 
algorithms usually use iterative Closest Point algorithm (ICP) [14] or point-to-line 
[15] methods for displacement estimation. However, more resource-intensive 3D 
LIDAR or machine vision systems can achieve higher accuracy and build a more 
detailed map [9, 10, 11, 12, 13, 16-20, 21], but these systems require higher 
computing power. 

One of the first SLAM systems based purely on machine vision was developed by 
Henry et al. [22, 23]. The system was based on RGB-D camera data and feature 
point detection. An ICP-based algorithm was used to estimate the displacement and 
construct the pose graph. The high computational demand of the ICP algorithm was 
reduced to avoid the need to match the entire point clouds. A few pre-selected points 
and reduced point clouds are required to be matched. Instead of the pose graph 
optimization [24], the SBA method [25] was used to minimize the estimated path 
errors. 

Another system uses a similar solution [26], where a drone is controlled utilizing an 
RGB-D camera. A FAST feature point detector is used, which is a less robust 
detector, i.e. less invariant to transformations. It has the advantage that the algorithm 
has a short processing time. It uses data from an Inertial Measurement Unit (IMU) 
sensor to fit the point clouds and estimate the initial displacement. Subsequently, 
several researchers [12, 27] have improved the accuracy of the algorithm by 
tracking feature points. The use of robust feature detectors can further improve the 
system. 

The operation of each feature point detector may be different in various 
environments. One study compares three robust feature search methods [27]: Scale-
Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and 
(Oriented FAST and Rotated Brief) ORB feature detectors. Feature point detectors 
are used for both successive image matching and g2o optimization [24]. The octree-
based volumetric representation method is used to display the map. Another 
research [13] saves the surfel map for position estimation and also stores a multi-
resolution surfel map in octree for later 3D surface reconstruction. After g2o 
optimization, the final global surface map is obtained. Yuan et al. present an ICP-
based method for reconstructing a three-dimensional map [28]. The method first 
searches for SURF feature points in two color images and then estimates the relative 
displacement between them in two steps. In the first step, mismatched feature point 
pairs are deleted based on the Euclidean distance of the features. Next, an initial 
displacement estimate is determined between successive measurements using the 
Random sample consensus (RANSAC) algorithm, and feature pairs that have been 
incorrectly detected are removed. Next, a modified ICP algorithm determines the 
final estimated displacement. The random selection of features was solved by 
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removing those too close by determining the Euclidean distance between them. Key 
images are selected to detect the previously investigated neighborhood, i.e., the 
loop-closure algorithm works. The key image selection is based on the condition 
that they are not too close to each other. Their results were compared with those of 
the SLAM system of Endres et al. [27], using SIFT, SURF, and ORB feature point 
detectors. Feature point search methods are investigated in many studies, but often 
the more computationally demanding ones are chosen due to their robustness. ORB 
is much faster and hardly increases the total error value, but still the SURF detector 
is chosen more often [11]. 

One of the critical problems with machine vision-based mapping and tracking is the 
large amount of data that needs to be processed and stored, mainly due to the size 
of each point cloud. Thus, some methods are only capable of small-scale 
reconstruction [29]. 

3 Methodology 

3.1 The System Structure 

The improved Simultaneous Localization and Mapping (iSLAM) system presented 
in this paper is an improved version of our previous system [4, 5]. A summary of 
its operation is shown in Figure 1. The system estimates sensor motion by frame-
to-frame matching of color and depth images from an RGB-D camera. Most SLAM 
techniques can be divided into two main parts: a front-end and a back-end module. 
The creation of individual point clouds, storage, running of SURF feature detector, 
3D feature point matcher, keypoint finder, frame-to-frame displacement estimation, 
loop-closure algorithm, and update of a closed loop in case of a successful hit are 
parts of the front-end module. The back-end module contains only the 3D 
reconstruction procedure; all new positions are estimated and corrected in the front-
end part. The generation of the final 3D model is not performed online, but the 
continuous update of the path is done in real-time. 

3.2 3D Point Cloud with Indexing 

The system processes the RGB-D camera’s color (IRGBn) and depth (IDn) images in 
sequence. From the last depth data, it generates a 3D point cloud to which it assigns 
the colors in the color camera image, which becomes the 3D color point cloud (Xn). 
More previous data is needed for displacement estimation and for continuously 
running the loop-closure algorithm during each matched process. From the current 
RGB-D camera image, a 3D point cloud has to be generated by detecting feature 
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points in the color image (SURF detector), and finally, this data has to be stored for 
later use. Therefore, a three-dimensional point cloud is generated from the RGB-D 
camera’s color and depth data. Each point in the point cloud is indexed by the pixel 
position of the color camera image for fast matching of the 3D feature points. Each 
point in the point cloud contains its three-dimensional spatial coordinate in the 
camera’s local coordinate system and its corresponding color value. 

  

Figure 1 
Essential connections in the iSLAM system 
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3.5. Distance Image Filter (DIF) 

A conditional averaging filter was applied to the depth image to reduce the 
measurement noise in the depth image. Algorithm 1 is based on a 3×3 averaging 
filter. Still, it skips points where the distance measurement gave an erroneous result, 
i.e., it has a value of zero. 

 

Algorithm 1 
Depth image filter (DIF) [3] 

3.3 Feature Descriptor 

Estimating the displacement between successive images requires the partial overlap 
of the corresponding images and point clouds. From the common part of the point 
clouds, the system selects a few points present in both. The selection is made using 
the descriptors in the color camera image. For each new frame, a search for SURF 
feature points in the color camera image is performed once (Fn), and then the feature 
descriptor vector is stored in the voImage repository together with the previously 
created 3D point cloud. The threshold of the SURF detector is varied based on the 
sharpness of the images; if an image contains too few feature points, the threshold 
is set to a lower value. 

The system continuously selects key frames from the new color camera images.  
The loop-closure algorithm continuously monitors the match between the new 
image and the keyframes using feature descriptors. If the sensor is in a similar 
position as before, the current estimated position can be refined. The selection of 
keyframes is based on two criteria. One keyframe is selected every 20 frames, such 
that the sharpest frame with the most feature points is selected from the last 20 
frames. Feature descriptors are used to determine the sharpness. 
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Only a part of the voImage repository is permanently present in memory, such as 
feature descriptors and estimated position (Tw) data. Due to its large size, only the 
last N 3D colored point cloud frames are stored in the memory, where N is the 
parameter of the given configuration. Older data are temporarily archived in the 
background memory. The loop-closure algorithm tries to determine whether the 
current camera image matches an earlier key image in this section by examining the 
match between feature descriptors. If a match is found, the 3D point cloud is 
reloaded to determine the spatial position of the sensor in the local coordinate 
system for the feature descriptors that just match. Thus, data with high memory 
requirements only occupy memory for a short time, and the system can work with 
large amounts of data. 

3.4 Improved Position Estimation Method 

The position estimation of the new camera image is performed using the acquired 
data (voImage repository) by running the improved multi-step fitting procedure 
(Algorithm 1), which iteratively applies SVD. Our previous SLAM system used the 
ICP algorithm [4] to estimate the new position. However, this system had a more 
significant error than the one using the new ISVD procedure, and the running time 
of the ICP algorithm was much longer. The system always tries to fit the latest MP 
image to the previously estimated camera positions using the previously stored data 
(Xn-1, Fn-1, Xn-2, Fn-2,..., Xn-MP, Fn-MP), and finally, the new estimated position (TWn) 
is obtained by applying different weights. (The method calculated the weights at the 
final part of Algorithm 1. is described later.) 

On system start-up, the first camera position will be the origin of the global 
coordinate system. A new camera image is only aligned with a specific number of 
immediately preceding camera images. In our system, a given image is matched to 
4 previous images (f iteration); with a smaller number of matches, a less accurate 
map can be produced. In our experience, fitting to more previous images only 
slightly improves position estimation but significantly increases the processing 
time. For efficiency, the position estimation of a given image is done by parallel 
processing on multiple threads for the previous few images. The first step in 
matching the current frame to a previous frame is to select a reduced point cloud 
from the current and the previous point cloud. The function match (Xn, Fn, Xn–1, Fn–

1) determines the color camera pixels that match in the two frames based on feature 
points and then assigns their spatial coordinates to the matching points from the 
previously generated indexed point cloud. Thus, two reduced point clouds are 
obtained, in which each point has its corresponding spatial pair (Dn–f, Sn–f). In the 
next step, the relative displacement of the camera between the two adjacent images 
is determined. The initial relative displacement Tn–f = 0 between the sets Dn–f, and 
Sn–f is recalculated and refined in several steps. At each iteration, the transformation 
(Tn–f) between the two point sets is determined with Singular Value Decomposition 
(SVD) and used to perform a trial test run. During the test fit, the system converts 
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the set S into the coordinate system of the set D using the resulting transformation 
(S’ = Tn–f  * S ). Finally, it checks the accuracy of the fit and the Euclidean distance 
of adjacent point pairs and finally deletes any point pairs that generate a larger error 
than the prescribed error. 

To determine the quality of the match (1), the system takes the average distance of 
the points after the test fit, and the reciprocal of this is used to give the weight  
(Wn–f) representing the quality of the fit, where |D| denotes the number of pairs of 
points currently being tested, �𝑑𝑑𝑖𝑖𝑥𝑥 ,𝑑𝑑𝑖𝑖𝑦𝑦 ,𝑑𝑑𝑖𝑖𝑧𝑧)  ∈ 𝐷𝐷, (𝑠𝑠´𝑖𝑖𝑥𝑥 , 𝑠𝑠´𝑖𝑖𝑦𝑦 , 𝑠𝑠´𝑖𝑖𝑧𝑧� ∈ 𝑆𝑆′ are the 
coordinates of the matched points: 

 𝑊𝑊𝑛𝑛−𝑓𝑓 =  1
1

|𝐷𝐷|−� (|𝑑𝑑𝑖𝑖𝑥𝑥−𝑠𝑠´𝑖𝑖𝑥𝑥|+|𝑑𝑑𝑖𝑖𝑦𝑦−𝑠𝑠´𝑖𝑖𝑦𝑦|+|𝑑𝑑𝑖𝑖𝑧𝑧−𝑠𝑠´𝑖𝑖𝑧𝑧|)
|𝐷𝐷|

𝑖𝑖=0

 (1) 

The higher this value, the closer the points are after the fit, so there are fewer pairs 
of faulty points in the reduced set, and the lower the noise of the point sets.  
The distance of the incorrectly detected point pairs will be larger than the others, so 
the point pairs whose distance is larger than a threshold value th are deleted in each 
step. The threshold value decreases over the iterations according to a power function 
(2), where j is the number of iterations and the α, β constants are set empirically 
(see later). 

 𝑡𝑡ℎ = α ∗ 𝑗𝑗β (2) 

Each matching estimation ends when the cycle reaches a maximum number of 
iterations (maxIt), or too few points remain after deleting non-matching point pairs 
(minPoint), or the threshold falls below a certain level. For the current image and a 
previous image, the relative fit is added to the spatial position of the previous image 
to obtain the global spatial position of the current image from the perspective of the 
previous few images. Using these values together with the previous weights, the 
spatial position (Twn) of the current image is obtained. 

3.6 Loop-Closure Detection 

As a last step, the front-end module uses the loop-closure algorithm to continuously 
monitor the matches between the current image and the keyframes. It determines 
the match by comparing the feature descriptors of the current image with the feature 
descriptors of the previous key images. If it finds a match with a previous image, it 
tries to determine a relative displacement between the key image and the current 
image using multi-step matching (Algorithm 2). 

The system does not examine all current images; it only runs the loop-closure 
algorithm if the image has sufficient sharpness. The sharpness is determined based 
on the feature descriptors of the previous 20 images. If the number of feature 
descriptors in the current image is at least 1.2 times greater than the median of the 
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number of feature descriptors found in the previous images, then that image is less 
blurred and more detailed than the others. The system then checks if the position of 
the current image and the global position of the key image are close to each other, 
if the sensor is facing in the same direction, and if it is in the same position as before. 
If there is a large discrepancy, it will not examine the key image because either it is 
a false-detection case or there may be very little overlap between the key image and 
the current image. Thus, the running time of the algorithm is significantly reduced 
because a small number of key images have to be examined by multi-step matching, 
which has a non-negligible running time due to the search for feature pairs. 

 
Algorithm 2 

Multi-stage three-dimensional point cloud matcher (Improved ISVD) 
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3.7 3D Reconstruction 

The back-end allows the reconstruction of a three-dimensional point cloud of the 
covered area. The system uses previous position estimations to merge the individual 
point clouds into a global cloud. Points that are too close are deleted. Finally, the 
point cloud can be exported to a .ply file for post-processing. The point cloud is 
post-processed using MeshLab. The size of the original point cloud must be reduced 
as a first step. After random sampling [30] from the surface points, the remaining 
surface point mesh points are triangulated according to the BPA [31] algorithm 
(triangle mesh). 

4 Results and Evaluation 

4.1 Datasets 

The iSLAM system presented in this paper is compared with current similar SLAM 
procedures. In all cases, the tests were run on a computer with the following 
configuration: CPU: AMD Ryzen 5 5600X, RAM: 32GB. For the comparison, the 
algorithm parameter settings were identical for all datasets. The accuracy of the 
system was tested on two public benchmark datasets from different sources. One of 
the large datasets available online is from the Technical University of Munich 
recorded with several different Kinect sensors [7]. The tests were run on datasets 
belonging to the fr1 and fr2 groups. The University of Poznan dataset [8] was used 
as a second source. This was created and made available for mobile robot 
development. Several new datasets were added to the original four measurement 
lines, where the recording was repeated with Kinect 1 and 2 sensors. Both datasets 
contain real absolute spatial position values for each image taken at each position. 
(Although there are outliers for absolute-space location for some datasets). 

4.2 Results 

In similar studies, the Absolute Trajectory Error (ATE) measure is often used to 
determine the accuracy of the estimated displacement [32]. The ATE value shows 
the difference between the estimated trajectory and the actual position. In 
displacement estimation, the minor errors at each fit are accumulated, so if an error 
occurs at one fit, it will be reflected at others. The ATE values for the estimated and 
actual displacements were measured in meters. In the following tables (Table I-III), 
the sum of the ATE values Root Mean Square Error is compared with the results of 
similar works. 
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In the next section, the testing of the algorithm on TUM datasets is presented. Many 
researchers use these to test the accuracy of their systems, so we have purposely 
chosen these datasets for comparability. 

In Table I, the ATE values are used to test the accuracy of the improved ISVD 
algorithm. We also tested the accuracy of the ISVD matching algorithm alone, with 
the loop-closure (LC) algorithm and with the DIF filter. When the algorithm was 
run, the value of the MP parameter (number of previous images to which the 
matching is performed) was 4 in all cases. 

The results show that when only the improved ISVD algorithm was used to estimate 
the motion, the worst results were obtained for the examined data sets. When the 
LC algorithm was added, better results were obtained in all cases, either the data set 
contained larger or smaller closed loops. When the LC algorithm was added with 
the DIF filter, the accuracy was further improved in some cases. For the 21 data sets 
tested, the DIF filter gave more accurate results than when no filter was used in 12 
cases. Using the DIF filter 59% of the time, the results were better for randomly 
selected data sets. 

Table I 
The Absolute Trajectory Error (ATE RMSE) values of the proprietary algorithm were tested on fr1, fr2 

and fr3 datasets. All values are in meters. Bold numbers highlight the best results. 

Data set no LC, no DIF, 
MP = 4 

LC + MP = 4 LC + DIF + 
MP =  4 

fr1/rpy 0.0466 0.0260 0.0320 
fr1/xyz 0.0232 0.0140 0.0148 
fr1/360 0.1028 0.0683 0.0757 
fr1/desk 0.0455 0.0300 0.0298 
fr1/room 0.2727 0.1755 0.1403 
fr1/desk2 0.0847 0.0534 0.0535 
fr1/plant 0.0517 0.0320 0.0338 
fr2/desk 0.3431 0.2170 0.1039 
fr2 pioner 360 0.5301 0.4069 0.3877 
fr2/pioner slam 0.5569 0.4421 0.3571 
fr2/pioner slam 2 1.2000 1.1754 1.3110 
fr2/pioner slam 3 0.4710 0.4558 0.9211 
fr1 teddy 0.1414 0.1432 0.1383 
fr3 long 0.4502 0.2267 0.1100 
fr2/flowerbouquet 0.1688 0.1682 0.1202 
fr2/metallic_sphere 0.7879 0.7785 0.8273 
fr3 walking static 0.0391 0.0268 0.0252 
fr3 walking xyz 0.2696 0.1184 0.0900 
fr3 walking halfsphere 0.4286 0.1044 0.1063 
fr3 sitting xyz 0.0716 0.0468 0.0324 
fr3 sitting halfsphere 0.0716 0.0524 0.0499 



L. Somlyai et al. Improved RGB-D Camera-based SLAM System for Mobil Robots 

‒ 118 ‒ 

For one comparison, we selected datasets from the TUM datasets where recordings 
were made in a static environment. These datasets were compared with the work of 
Guclu et al. [9], Whelan et al. [10], Liu et al. [11], Endres et al. (RGB-D SLAM) 
[12], and Stückler et al. MRSMap system [13], the results of which are summarized 
in Table II. In five cases, fr1/rpy, fr1/xyz, fr1/360, fr2/flowerbouquet and 
fr2/metallic sphere, we obtained better ATE values than the similar previous works. 
In these cases, we obtained slightly better results, and in the other cases, the ATE 
values we obtained were of the same order of magnitude as the tested ones. 

Table II 
The Absolute Trajectory Error (ATE RMSE) values of the proprietary algorithm were tested on fr1, fr2 

and fr3 datasets, in static environment. All values are in meters. Bold numbers highlight the best 
results. 

Data set iSLAM 
(own) 

Ext. 
RGBD 
SLAM 
[9] 

Whelan 
et al. 
[10] 

Qiang et 
al. [11] 

RGBD 
SLAM 
[12] 

MRSMap 
[13] 

fr1/rpy 0.025 
 

0.028 
  

0.027 
fr1/xyz 0.013 0.014 0.017 0.013 0.014 0.013 
fr1/360 0.056 0.075 

    

fr1/desk 0.026 0.022 0.037 0.064 0.026 0.043 
fr1/room 0.140 

 
0.075 

 
0.087 0.069 

fr1/desk2 0.049 0.034 0.071 
  

0.049 
fr1/plant 0.034 0.068 0.047 

  
0.026 

fr2/xyz 0.015 
  

0.015 0.008 
 

fr2/desk 0.120 0.090 0.034 
 

0.057 0.052 
fr2/ flowerbouquet 0.120 0.137 

  
0.131 

 

fr2/metallic sphere 0.779 0.914 
  

1.099 
 

fr2/pioner slam 0.360 0.349 
  

0.367 
 

fr2/pioner slam 2 1.175 0.400 
  

0.381 
 

fr2/pioner slam 3 0.4558 0.3410 
  

0.511 
 

fr3 long 0.1100 
  

0.028 0.032 
 

Next, we compared datasets from the TUM datasets where the recordings were 
made in a dynamic environment. These datasets were compared with Co-fusion 
[16], StaticFusion [17], Hachiuma [18], Liu [19], and Guo’s work [20], the results 
of which are summarized in Table III. The results show that our method can handle 
this environment. For the selected datasets, in addition to the works used for 
comparison, our system did not give better results in this case, but in order of 
magnitude, our results are comparable to the systems under study. 
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Table III 
The Absolute Trajectory Error (ATE RMSE) values of the proprietary algorithm were tested on fr1, fr2 

and fr3 datasets, in dynamic environment. All values are in meters. Bold numbers highlight the best 
results. 

Data set iSLAM 
(own) 

Co-fusion 
[16] 

StaticFusion 
[17] 

Hachiuma 
(DF) [18] 

Liu 
(BS+DR) 
[19] 

Guo 
(DUCK) 
[20] 

fr3 walking 
static 

0.0252 0.551 0.014 0.036 0.029 0.0235 

fr3 walking xyz 0.0900 0.696 0.127 0.085 0.126 0.0426 
fr3 walking 
halfsphere 

0.1044 0.803 0.391 0.072 0.336   

fr3 sitting xyz 0.0324 0.027 0.040 0.052 0.045 0.0203 
fr3 sitting 
halfsphere 

0.0499 0.036 0.040 0.041 0.037   

Table IV shows the evolution of our algorithm. Our previous results [4], [5] on the 
TUM fr1/desk and the trajectory1 dataset from the Poznan one-frame were 
compared to the current, more accurate procedure. It can be seen that the 2018 
version of fr1/desk [6] did not yet include the LC algorithm and is much less 
accurate than the current values, which already included the LC procedure.  
The most accurate result was obtained with the current version, where the improved 
SLAM method uses the sensor data with a conditional averaging filter, and closed 
loop (LC) detection is also continuously applied. 

Table IV 
The Absolut Trajectory Error (ATE RMSE) value of the own algorithm examined on the fr1/desk and 

Poznan/traj1 datasets, shows the development of our procedure. All values are given in meters. 

Data set 2018 surf4 
[5] 

ISVD+LC 
surf-4 [6] 

ISVD+LC 
surf-4 

iSLAM 
(ISVD+LC+DIF 

surf-4) 
fr1/desk 0.0907 0.0628 0.0300 0.0298 

PUTK2/traj1, 
on 500 images 

0.1952 
 

0.2012 0.1961 

The back-end part of the system provides the possibility to reconstruct the traversed 
area in 3D. Figure 2 shows the 3D reconstruction of the fr1/desk dataset. 

The time to fit each new frame and run the loop-closure algorithm averaged 100 ms 
for smaller data sets and 150 ms for larger data sets over the processing of all 
images. The actual and estimated paths for the data series in Table II. are 
summarized in Figure 3. Estimated paths are in blue, real paths in black, and ATE 
values per point in red. 
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Figure 2 

The 3D reconstruction of fr1/desk data 

 
Figure 3 

Running results of iSLAM (ISVD+LC+DIF) algorithms on a) fr1/rpy, b) fr1/xyz, c) fr1/360, d) 
fr1/room, e) fr1/desk2, f) fr1/plant, g) fr2/desk, h) fr2/pioner slam 2 and i) fr3/walking xyz datasets. 

The actual path is shown in black, the estimated path in blue, and the error in red. 
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Conclusions 

In this paper, an improved SLAM (iSLAM) system is presented and compared with 
other similar systems. The system estimates the sensor motion by frame-to-frame 
matching color and depth images from an RGB-D camera and generates a 3D point 
cloud of the covered area. It uses a SURF feature detector to match new images to 
previous ones. By searching for feature point pairs, it determines matching points 
between the new frame and some previous frames and then converts these points 
into a 3D point cloud. During the matching process, a multi-step matching algorithm 
estimates the relative transformation between the new frame and some of the 
previous ones. The resulting multiple estimated displacements are taken into 
account with the weights obtained during the fitting process to determine the final 
displacement of the new frame. The system uses the loop-closure algorithm to mark 
key image frames continuously and then fits the new frames to them, reducing the 
cumulative error. To determine the quality of our method, we used two open 
databases to run the algorithm on 22 different datasets and compared the resulting 
ATE RMSE values with the results of seven other systems. In five cases, our system 
gave better results; in the other cases, the results differed only slightly from the best 
values of the other systems. 
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