
Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 29 –

Low-Cost Autonomous Trains and Safety
Systems Implementation, using Computer
Vision

Dan Andrei Suciu1, Eva-H. Dulf1 and Levente Kovács2

1 Technical University of Cluj-Napoca, Faculty of Automation and Computer
Science, Department of Automation and Applied Informatics, George Barițiu 26-
28, 400027,Cluj-Napoca, Romania; suciu.fl.dan@student.utcluj.ro,
eva.dulf@aut.utcluj.ro
2 Óbuda University, Physiological Controls Research Center, Bécsi út 96/b, 1034
Budapest, Hungary; Kovacs.Levente@nik.uni-obuda.hu

Abstract: The need of modern transport solutions is a tendency that has been developed also
in the railway transport. This study provides a possible implementation of a fully autonomous
train system with low impact on the railway infrastructure, using computer vision and
machine learning concepts. It could be implemented on various existing safety and
infrastructure systems. The system has been tested on a H0 scale modified model train and a
Raspberry Pi with a Pi Camera as processing unit. The proposed system combines several
software and hardware technologies into a single embedded system that provide the required
safety on railways and can set the trend for real trains. Furthermore, the main motivation of
the concept is that the railway transport automation represents an essential step in
transforming this domain into one as flexible as road transport. In this regard, over the years,
a multitude of control and safety assurance systems, based on various technologies have been
developed to lead to the most optimal outcome. The primary innovation of the study resides
in the application of neural network quantization to enhance temporal efficiency, alongside
the advancement of a comprehensive autonomous railway transportation system.

Keywords: automation; computer vision; European Rail Traffic Management System;
machine learning; railway; quantization; safety.

1 Introduction
In recent years, there has been an observed “worldwide” trend towards the
automation of the public transport [1] [2], especially the ”green” alternatives.
The railway is one of the most important transport modes because of the high safety
standards compared to the road transport. The number of accidents on railways is
significantly lower, according to the latest studies. The main cause of railway

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 30 –

accidents, is the human error [3], made by the railway workers and also external
factors (for instance the drivers that do not respect the level crossings rules [4]). For
this reason, the majority of the railway accidents could be prevented by the
automation of the safety and control systems.

The main objective of the concept described is the reduction of the error from the
modern railway transportation system, by limiting the human intervention [3], using
modern solutions of image processing and hardware integration. Furthermore, this
study attempts to standardize the different existing railway safety systems into a
unique solution based on European Rail Traffic Management System (ERTMS) [5]
structure, described in the following sections of this paper. The proposed system
has a flexible and universal character due to the fact that it could be adapted to
operate on different types of trains. In addition, the system maintenance costs and
complexity are low because of the small number of elements involved in the process
of automation and due to the use of already existing infrastructure. The main
sections described in this paper are the software and hardware implementations of
the proposed systems and the analysis of the performance by testing at H0 scale.

2 Related Work

2.1 Railway Safety Systems
There are numerous types of safety elements or systems implemented in different
countries [6]. Only a few of these systems are compatible with each other and this
could create problems regarding the international trains that must be driven by
different operators and hauled by local locomotives. This argument highlights the
need of a standardized system [7] for compatibility assurance between the
infrastructure of different countries. The most efficient standardized system already
implemented is European Rail Traffic Management System (ERTMS). The system
includes two main components: European Train Control System (ETCS) and Global
System for Mobile Communications – Railway (GSM-R) [5] [7]. ETCS includes 4
automation levels, implemented with different types of railway infrastructure
elements, software solutions and communication protocols. The system is described
in Figure 1.

Figure 1

ETCS levels description

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 31 –

The second component of ERTMS is GSM-R, which is the main communication
protocol used by ERTMS trains to share information with other trains and the
railway traffic control system. [8] The GSM-R platform offers features such as
Voice Broadcast (VBS), Group Calling (VGCS) and emergency call pre-emption,
all of which contribute significantly to the safety levels required by the standard.
The main disadvantage of this system is the necessity of the human presence in the
train, because it cannot ensure a maximum traffic safety.

2.2 Railway Automation Systems
There are many systems that contributes to different levels of railway automation:
machine learning and neural networks algorithms, radar, GPS, Monorail, CAN, etc.
All these systems could be interconnected to increase the redundancy and the levels
of safety of the driverless trains as:

• Radar - It registers the position of a train trough the railway stations it passes.
The system cannot be considered as real time, because of the distance between
the stations. [9]

• GPS - The GPS system is used to determine the exact speed and position of
the trains that are present on a railway section. Compared to Radar it is more
suitable for railway systems because of the low error levels. [9] [10]

• Internet of Things (IOT) - This concept is represented in railway automation
by the microelectromecanic (MEMS) sensors which could register the exact
position of a train by the rail vibrations. [2] [11]

• Artificial Intelligence (AI) - It is the latest approach to railway automation.
The AI railway automation systems are currently unstable but there are already
many prototypes that could be used on real trains, with human presence
redundancy. Line detection and railway traffic signals detection algorithms
have been developed to ensure the safety of the AI systems used in train
automation. The main limitations of these systems are the low resolution of
the acquisition equipment or the necessity of powerful and expensive
computers that could run the neural networks and the high complexity
processing algorithms. [2]

• Other technologies - One of the most important aspects of the railway
automation is the necessity of good communication between trains and
dispatch. One of the best technologies proposed for railway automation is 5G,
because it ensure a better broadband communication. With the help of Non-
Orthogonal Multiple Access (NOMA) technology, the system could be shared
between multiple users simultaneously. [2] [12]

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 32 –

3 Design and Implementation
The system proposed contains two main parts: hardware and software
implementation. The hardware component consists of all the physical modules that
should be designed and mounted on the railway infrastructure and on the
autonomous trains. The software part implements the communication between the
hardware components and the functionality of all the systems and automated tools
that ensure the safety of the trains traffic and those that helps the railway vehicles
to move. All the components are implemented on the H0 scale model, but they could
be extended to real trains.

3.1 Hardware Implementation
The main hardware components are presented in Table 1. In addition to the elements
presented, there have also been used other parts, such as transistors and relays.
The main power source is a 12 V supply, connected to the rail tracks. The
locomotive DC motor is powered by the voltage collected by the train wheels from
tracks, via an H bridge, used for controlling the speed and the direction of
movement. The H bridge is controlled by the Raspberry Pi board via General
Purpose Input/Output (GPIO) pins.

Table 1
Hardware components

NR. Hardware component Description

1 NodeMCU Board Used as base station (dispatch). It reads the sensors
and controls the switches

2 Raspberry Pi 4B Board The main board mounted on the train, used for data
processing and control.

3 Raspberry Pi Camera Used for data acquisition

4 Reed Sensor Used as train presence sensor. Mounted on the track;
Triggered by permanent magnet.

5 74HC4067 Multiplexer Used for multiplexing the inputs and outputs of the
NodeMCU board

In Figure 2 the schematic diagram of the main hardware components and the
physical connections between them is presented. The hardware system is composed
of two parts: the fixed component, represented by the trackside base station circuit
that is controlled by NodeMCU and the mobile component, mounted on the train
that is managed by Raspberry Pi.

Due to the small number of Input/Output (I/O) pins of the NodeMCU board, there
are necessary two multiplexers to increase the amount of the sensors or the relays
that could be interfaced with the controller.

On the bottom of the locomotive a permanent magnet is attached, so when the train
will pass over the reed sensor that is fixed on the track, it will send a short impulse

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 33 –

towards the NodeMCU controller to notify that the line is busy. This operation mode
is similar to the Eurobalises used in the ERTMS system described in section 2.1.
Technically, both systems are used to determine the exact location of a train,
information that can later be used to control rail traffic and avoid collisions.
The communication between NodeMCU and Raspberry is made wireless.
The communication process is described in section 3.2.2. All other electronic
components are wired to NodeMCU, respectively to Raspberry board.
The NodeMCU board is powered from a 5 V supply and the relay interface board
is connected to the main power source (12 V). The Raspberry Pi board is interfaced
with the Pi camera and the H bridge circuit used to control the locomotive
parameters and it is powered from a LM2596 step-down module, used for
converting the voltage acquired from the train wheels on the rails (12 V) into a 5 V
supply.

Figure 2

Hardware implementation diagram – components

3.2 Software Implementation
The software component of the system includes the control of safety elements,
traffic management on the network, speed control, image processing and the sign
recognition algorithm as well as the development of the neural network structures
used in these processes. For this reason, the software component represents the main
part of the system, as it is responsible for controlling and managing all the hardware
components described in section 3.1. This section could also be divided in two parts:

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 34 –

the NodeMCU code (Arduino C++ language) and the Raspberry Pi code (Python
programming language), whose characteristics are described below.

3.2.1 NodeMCU Code:

The main purpose of the NodeMCU board is to interpret the values of the reed
sensors from the system and to control the position of the railway switches along
the simulated route. Thus, NodeMCU could be considered the dispatch which
manage the railway traffic and ensure the safety of the entire system. It checks the
presence of the trains on the tracks. In this way, it can determine the approximate
position of every train and redirect the others, with the help of the railway electronic
controlled switches, on the most suitable route to avoid the possible accidents.

To conclude, the NodeMCU controller ensures the safety, the routing and the
scheduling of the trains that are operating within the local railway network. This
mode of operating could be compared with the main principles used in the
standardized ERTMS system, described in section 2.1 and ensures the real time
nature, one of the most important characteristics of the railway systems. One of the
main reasons for which the nodeMCU board was chosen, is the high performance
relative to the low price of this device and the flexibility of the communication
channels. The possibility of using the wireless internet connection is also a
mandatory aspect for the proper functioning of the system.

The function diagram of the code developed for NodeMCU board is presented in
Figure 3.

Figure 3

NodeMCU code – functions diagram

The ”setup()” and ”loop()” functions, are the mandatory functions of the code,
where all other functions are called. The code is composed of two parts: the
controller component and the wireless communication implementation. The
controller segment sets the inputs and the outputs used for the sensors and the
switches and it controls the two multiplexers by the selection signal. The values
read and written are manipulated in the infinite loop section of the code for
transmitting the commands to the raspberry pi controller via Message Queuing

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 35 –

Telemetry Transport (MQTT or mosquito) communication protocol presented in
3.2.2 section. The communication section implements the wireless connection and
sets up the custom MQTT commands that are sent wirelessly to the Raspberry Pi
controller.

3.2.2 Raspberry Pi Code:

The Raspberry Pi board represents the ”brain” of the locomotive and the main
processing unit. It is the interface between the external environment of the
autonomous train and the internal railway management and control system, due to
the Pi Camera that is connected to it. The purpose of the python code written on
Raspberry is to process the images captured by the camera and to classify the data
by the predefined labels and then to send the information extracted to the base
station via MQTT protocol. In addition, Raspberry must control the DC motor of
the locomotive by the GPIO pins and the attached H bridge circuit depending on
the requests made by the base station.

The essential part of the code is the machine learning algorithm. The neural network
developed was built on a more powerful processor than the Broadcom BCM2711,
Quad core Cortex-A72 (1.8 GHz) chip with which Raspberry Pi board is equipped,
because of the better speed and performance obtained while training and testing the
AI model. The processor used was Intel Core i7 - 10750H CPU (2.60 GHz). Two
versions of the model were developed and tested to analyze the performance in
context of processing and classification speed and accuracy values obtained after
training and validation of the neural network. The first version is a convolutional
neural network (CNN) and the second one is a modified quantized model.
The quantized network was built based on the first model.

The first model is a sequential convolutional neural network that contains three
convolutional layers (from which, two are hidden), each one followed by a max
pooling layer and two different fully connected layers. The structure of the neural
network described is presented in Figure 4. The reason for using a quantized neural
network is to improve the performance on Raspberry Pi. The Broadcom BCM2711
CPU is a low performance processor and the memory of the board is small, therefore
the code could work slow if all operations are performed in floating point. Thus, the
quantization can be a solution to increase speed. The principle of quantization
method is the transformation of the floating-point values that are manipulated by
the network into lower precision inputs.

This process can lead to a higher speed, but the disadvantage is that the accuracy
will decrease significantly, depending on the complexity of the calculus that
should be performed.

In conclusion, the quantized network will have the same structure as the original
network, but the difference is the representation of values in the board memory and
the background operations execution mode. The comparison between the
performances obtained by the two networks will be performed in chapter IV.

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 36 –

Figure 4

Convolutional neural network – structure diagram

The Pi camera that is mounted on the locomotive send the frames of the live video
as inputs to the neural network and the output is the corresponding label of the
railway signal detected. The training data was collected with the same camera and
was labelled with the help of Keras Tensorflow tool. There are seven H0 railway
signs that are processed by this network, but there can be added more track signals.
After this process, the label obtained is sent via MQTT to NodeMCU board, that
take the matching decision depending on the signal detected. Message Queuing
Telemetry Transport (MQTT or mosquito) communication protocol is one of the
Internet of Things (IoT) transmission methods, used for message exchange between
two boards. Depending on the configuration, it can be unidirectional or
bidirectional, but there will be always a publisher-subscriber relation between the
entities. The main component is the broker, in this case, the Raspberry pi board, that
manage the entire communication system and connects all the subscribers to the
network. In this case the Raspberry pi board works as broker and also as one of the
clients. The other client is NodeMCU. The principle of communication is based on
topics. All the clients that have subscribed to a topic will receive the data published
on that topic. In this case, the data transmitted is composed of a byte, because there
are seven railway signs. Every bit from the byte represents a railway signal. When
a bit value is ”1”, it means that the sign corresponding to the bit position in the byte
was detected.

After the NodeMCU board receives the information from the locomotive, it sends
back the corresponding commands to Raspberry Pi, also through MQTT. The DC
motor speed and direction is then adjusted to ensure the proper operation of the
train. The MQTT communication principal diagram is shown in Figure 5.
The reasons for choosing Raspberry Pi were its small size, low price and the
possibility of simple integration in the system. Also, the compatibility with others
IoT platforms was a decisive aspect for choosing this board. In addition, the fact

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 37 –

that Python is the main language for Raspberry is an advantage regarding the
flexibility, simplicity and the high possibilities when it comes to high level machine
learning technology.

Figure 5

MQTT communication principal diagram

4 Experimental Results
In this section, a comparison will be made between the two neural networks
described in section 3.2.2. The main characteristics that will be analyzed concerns
the speed of the neural network and the accuracy of the results returned after the
training, testing and validation of the algorithm.

In the case of the H0 scale model, the speed of the software and hardware
components does not affect too much the performance of the entire system, but
measured on real trains, the time is decisive, because of the higher risks when it
comes to delays in the control process. Therefore, the hardware and software
components must be optimized to the highest level in order to ensure the railway
safety required by the proposed standard.

In addition, the hardware performance is analyzed in terms of the system's reaction
time, an essential aspect in railway traffic control. The primary aspect to be
analyzed, is the response time of the hardware components responsible for ensuring
the safety and organization of rail traffic.

4.2 The Initial Convolutional Neural Network Performances
The input of the neural network is a 255 × 255 pixels scaled color picture, so the
real data instance dimensions will be 255 × 255 × 3. For the optimization of the
network build process, the data was labeled and randomly grouped into three
groups: Training, Validation and Testing. The initial data (576 images sorted into 7
categories) is divided into batches of 32 images. The training data consists of 10

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 38 –

batches, the validation data of 5 batches and the test data of 3 batches. It is necessary
that the number of training and validation data is greater than the number of test
data to ensure the performance of the network and to avoid overfitting.

The test batch is used only to confirm the validation accuracy and it will not be used
in the last version of the neural network for memory usage minimization. The RELU
(rectified linear unit) activation function (1) is used for the first three layers and for
the first fully connected layer. For the output layer, the sigmoid activation function
(2) is used.

𝑓𝑓(𝑥𝑥) = � 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1)

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2)

The optimizer used for the minimization of the loss function is Adam. The Adam
optimizer is an extended version of the stochastic gradient descent method and it
provides a much higher performance in terms of number of iterations. The Adam
optimizer use two moving averages to estimate the iterations:

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (3)

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (4)

In the presented relationships (3) and (4), m represents the "momentum" element,
which is an instantaneous calculation of the gradient mean, while 𝜈𝜈 denotes the
squared sum of previous gradients. The terms 𝛽𝛽1 and 𝛽𝛽2 are the hyperparameters of
the Adam optimization method, and these elements represent the main novelty
compared to other gradient methods. The 𝑔𝑔𝑡𝑡 element, which appears in all three
equations, signifies the gradient of the current optimization step applied to the error
function.

The loss and accuracy graphs for the neural network training are shown in Figure
6, respectively in Figure 7. The logarithmic shape of the loss and accuracy curves
brings out the decrease in error over time.

The overall accuracy of the neural network is 97.014% and the average loss is 0.071.
The average execution time while training is 23 seconds (2 second/step) and the
average time during inference is 2.362 seconds (135 milliseconds/step).

Following the analysis of loss and accuracy graphs for both the initial neural
network and the quantized one, a relevant comparison of the performance of the
two automation solutions can be conducted, as described in section 4.4.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 39 –

Figure 6
Original network loss graph

Figure 7
Original network accuracy graph

Figure 8
Quantized network loss graph

Figure 9
Quantized network accuracy graph

4.3 The Quantized Neural Network Performances
The quantized neural network was obtained by modifying the original neural
network using an adapted version of the Learned Step Quantization (LSQ) method
[13, 14]. The LSQ method adjusts the scaling factor of each layer of a neural
network during training. Thus, by tuning the parameters of the method, it can help
the model to run faster, by reducing the number of bits used to represent the weights
dynamically, while training the neural network. The main parameters of the method
are: the number of quantization bits n, the scale factor q (it will change dynamically
after each layer), the incremental shift, that is the value with which the scale factor
is modified and 𝜖𝜖 which is a very low number used to avoid the division by 0 when
the scale factor is computed.

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 40 –

Equation (5) represents the calculation formula of the current layer scale factor.
The x factor represents the current layer weights vector.

𝑞𝑞𝑖𝑖 = |max(𝑥𝑥)−min(𝑥𝑥)|
(2𝑛𝑛−1)+𝜖𝜖

 (5)

The method provides high performance, because it reduces only the dimensions of
the weights set, maintaining the float32 representation and yet it obtains an
approximate 10% reduction of the execution time. The overall accuracy of the
quantized network is 98.507% and the average loss is 0.024. The average execution
time while training is 15 seconds (1 second/step) and the average time during
inference is 2.216 seconds (96 milliseconds/ step). The loss and accuracy graphs for
the quantized network training are shown in figure. 8, respectively in Figure 9.

4.4 Comparison between the Two Networks
It can be observed that the performance graphs have similar shapes and the accuracy
and the loss function values are comparable. It can also be observed that the
quantized model is able to reach good values in less time (epochs) than the original
one. In addition, the time required to compute the necessary calculations for training
and inference is reduced in the case of the quantized network. In some cases, it has
been observed that the inference accuracy was improved even if the precision of the
initial network was reduced by the quantization algorithm. Table 2 presents all the
performance characteristics of the two models for a better comparison.

Table 2
Presented neural networks comparison

Property Initial Network Quantized Network
Training Time 23 s (2 s/step) 15 s (1 s/step)
Inference Time 2.362 s (135 ms/step) 2.216 s (96 ms/step)

Training Accuracy 97.014% 98.507%
Inference Accuracy 90.453% 88.232%

Size on Disk 75.97 KB 37.961 KB

In conclusion, the quantized network has a higher performance than the original
network and it fits better to be used on edge computing devices (like Raspberry Pi)
which requires a lower memory usage, but the same performances. The method is
also suitable for the implementation on real systems on the trains.

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 41 –

4.5 Hardware Performance

Figure 10
Switch Time

The hardware performance was evaluated by testing the speed of the component’s
responses. In the ideal case, the elapsed time since the command was initiated until
the pin has changed the state from Low to High or vice versa, is 0. In reality it is
very important that this time period is as short as possible, at the millisecond level.
The time between the change of the output pin state and the moment of the relay
switching is ignored, due to the very short period of signal transmission.
The switching time can be observed between the two vertical red lines from Fig. 10.

After measuring the approximate switching time, it was concluded that the value of
the commutation is under 10 milliseconds. Therefore, the hardware components
show a sufficiently high performance to function on a real time system. In addition,
the speed of the hardware components significantly contributes to the improvement
of safety levels on the railway. In the case of real infrastructure, making simple
modifications to both the physical components and traffic control systems can
enhance the safety of future autonomous trains. This factor constitutes a notable
cost advantage in terms of the impact on an automation project.

Thus, based on the analysis of software and hardware performance, it can be
ascertained that the validity criteria of the study are met, paving the way for
potential extensions in various developmental directions, as delineated in the
concluding chapter. The final project board and the testing stand consisting of all
hardware elements and railway traffic control and safety systems is presented in
Figure 11.

D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision

– 42 –

Figure 11

The final project board

Conclusions

The goal of the proposed system is to integrate the necessary hardware and software
systems to control an autonomous train in maximum safety conditions by using
image processing and classification algorithms, developed with the help of two
neural networks. By comparing the two neural networks presented, the result was
that the quantized network is more efficient and it ensures the good functionality on
different edge devices. The system has been tested on an H0 scale train model and
all the safety requests have been fulfilled.

In conclusion, the main goals of this paper were met. The proposed system manages
to obtain higher performance than the existing systems by running on a quantized
neural network and to integrate the hardware and the software components in a
single low-cost implementation. The next goal is to extend the system on a larger
scale and try other quantization methods for the neural network to improve even
more the performances. The system can also be integrated in other railway safety
environments, that are used in the non-standardized countries, without many
changes to the infrastructure and with lower costs.

References

[1] MARKOVIC, Ljubo, et al. Evaluation of Alternative Solutions of General
Design of Railway Lines with Regards to Environmental Protection, Acta
Polytechnica Hungarica 19.6, 2022: 99-113

[2] SINGH, Prashant, et al. Deployment of autonomous trains in rail
transportation: Current trends and existing challenges. IEEE Access, 2021,
9: 91427-91461

Acta Polytechnica Hungarica Vol. 21, No. 9, 2024

– 43 –

[3] YU, Guanhua, et al. Identification of significant factors contributing to multi-
attribute railway accidents dataset (mara-d) using som data mining. In: 2018
21st International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018. pp. 170-175

[4] SINGHAL, Vivek, et al. Artificial intelligence enabled road vehicle train
collision risk assessment framework for unmanned railway level crossings.
IEEE Access, 2020, 8: 113790-113806

[5] RISPOLI, F.; NERI, A.; SENESI, F. Innovative train control systems based
on ERTMS and satellite-public TLC networks. WIT Transactions on The
Built Environment, 2014, 135: 51-61

[6] FLAMMINI, Francesco (ed.). Railway safety, reliability, and security:
Technologies and systems engineering: Technologies and systems
engineering. IGI Global, 2012

[7] DI MEO, Carlo, et al. ERTMS/ETCS virtual coupling: proof of concept and
numerical analysis. IEEE transactions on intelligent transportation systems,
2019, 21.6: 2545-2556

[8] SNIADY, Aleksander; SOLER, Jose. An overview of GSM-R technology
and its shortcomings. In: 2012 12th International Conference on ITS
Telecommunications. IEEE, 2012. pp. 626-629

[9] RANI, V. Amala; AUSTALEKSHMI, TV Subha. Can protocol driverless
train control system. May-IJRET: International Journal of Research in
Engineering and Technology, 2014

[10] FILIP, Aleˇs; SABINA, Salvatore; RISPOLI, Francesco. A framework for
certification of train location determination system based on GNSS for
ERTMS/ETCS. International Journal of Transport Development and
Integration, 2018, 2.3: 284-297

[11] ZHAO, Yuliang, et al. Continuous monitoring of train parameters using IoT
sensor and edge computing. IEEE Sensors Journal, 2020, 21.14: 15458-
15468

[12] ALSABA, Yamen, et al. 5G for Remote Driving of Trains. In:
Communication Technologies for Vehicles: 15th International Workshop,
Nets4Cars/Nets4Trains/Nets4Aircraft 2020, Bordeaux, France, November
16-17, 2020, Proceedings 15. Springer International Publishing, 2020. p.
137-147

[13] ESSER, Steven K., et al. Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019

[14] ANDREI-ALEXANDRU, Tulbure; HENRIETTA, Dulf Eva. Low cost
defect detection using a deep convolutional neural network. In: 2020 IEEE
International conference on automation, quality and testing, robotics
(AQTR). IEEE, 2020, pp. 1-5

	1 Introduction
	2 Related Work
	2.1 Railway Safety Systems
	2.2 Railway Automation Systems

	3 Design and Implementation
	3.1 Hardware Implementation
	3.2 Software Implementation
	3.2.1 NodeMCU Code:
	3.2.2 Raspberry Pi Code:

	4 Experimental Results
	4.2 The Initial Convolutional Neural Network Performances
	4.3 The Quantized Neural Network Performances
	4.4 Comparison between the Two Networks
	4.5 Hardware Performance

