
Acta Polytechnica Hungarica Vol. 21, No. 9, 2024 

– 29 – 

Low-Cost Autonomous Trains and Safety 
Systems Implementation, using Computer 
Vision 

Dan Andrei Suciu1, Eva-H. Dulf1 and Levente Kovács2 

1 Technical University of Cluj-Napoca, Faculty of Automation and Computer 
Science, Department of Automation and Applied Informatics, George Barițiu 26-
28, 400027,Cluj-Napoca, Romania; suciu.fl.dan@student.utcluj.ro, 
eva.dulf@aut.utcluj.ro 
2 Óbuda University, Physiological Controls Research Center, Bécsi út 96/b, 1034 
Budapest, Hungary; Kovacs.Levente@nik.uni-obuda.hu 

Abstract: The need of modern transport solutions is a tendency that has been developed also 
in the railway transport. This study provides a possible implementation of a fully autonomous 
train system with low impact on the railway infrastructure, using computer vision and 
machine learning concepts. It could be implemented on various existing safety and 
infrastructure systems. The system has been tested on a H0 scale modified model train and a 
Raspberry Pi with a Pi Camera as processing unit. The proposed system combines several 
software and hardware technologies into a single embedded system that provide the required 
safety on railways and can set the trend for real trains. Furthermore, the main motivation of 
the concept is that the railway transport automation represents an essential step in 
transforming this domain into one as flexible as road transport. In this regard, over the years, 
a multitude of control and safety assurance systems, based on various technologies have been 
developed to lead to the most optimal outcome. The primary innovation of the study resides 
in the application of neural network quantization to enhance temporal efficiency, alongside 
the advancement of a comprehensive autonomous railway transportation system. 

Keywords: automation; computer vision; European Rail Traffic Management System; 
machine learning; railway; quantization; safety. 

1 Introduction 
In recent years, there has been an observed “worldwide” trend towards the 
automation of the public transport [1] [2], especially the ”green” alternatives.  
The railway is one of the most important transport modes because of the high safety 
standards compared to the road transport. The number of accidents on railways is 
significantly lower, according to the latest studies. The main cause of railway 
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accidents, is the human error [3], made by the railway workers and also external 
factors (for instance the drivers that do not respect the level crossings rules [4]). For 
this reason, the majority of the railway accidents could be prevented by the 
automation of the safety and control systems.  

The main objective of the concept described is the reduction of the error from the 
modern railway transportation system, by limiting the human intervention [3], using 
modern solutions of image processing and hardware integration. Furthermore, this 
study attempts to standardize the different existing railway safety systems into a 
unique solution based on European Rail Traffic Management System (ERTMS) [5] 
structure, described in the following sections of this paper. The proposed system 
has a flexible and universal character due to the fact that it could be adapted to 
operate on different types of trains. In addition, the system maintenance costs and 
complexity are low because of the small number of elements involved in the process 
of automation and due to the use of already existing infrastructure. The main 
sections described in this paper are the software and hardware implementations of 
the proposed systems and the analysis of the performance by testing at H0 scale. 

2 Related Work 

2.1 Railway Safety Systems 
There are numerous types of safety elements or systems implemented in different 
countries [6]. Only a few of these systems are compatible with each other and this 
could create problems regarding the international trains that must be driven by 
different operators and hauled by local locomotives. This argument highlights the 
need of a standardized system [7] for compatibility assurance between the 
infrastructure of different countries. The most efficient standardized system already 
implemented is European Rail Traffic Management System (ERTMS). The system 
includes two main components: European Train Control System (ETCS) and Global 
System for Mobile Communications – Railway (GSM-R) [5] [7]. ETCS includes 4 
automation levels, implemented with different types of railway infrastructure 
elements, software solutions and communication protocols. The system is described 
in Figure 1. 

 
Figure 1 

ETCS levels description 
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The second component of ERTMS is GSM-R, which is the main communication 
protocol used by ERTMS trains to share information with other trains and the 
railway traffic control system. [8] The GSM-R platform offers features such as 
Voice Broadcast (VBS), Group Calling (VGCS) and emergency call pre-emption, 
all of which contribute significantly to the safety levels required by the standard. 
The main disadvantage of this system is the necessity of the human presence in the 
train, because it cannot ensure a maximum traffic safety. 

2.2 Railway Automation Systems 
There are many systems that contributes to different levels of railway automation: 
machine learning and neural networks algorithms, radar, GPS, Monorail, CAN, etc. 
All these systems could be interconnected to increase the redundancy and the levels 
of safety of the driverless trains as: 

•  Radar - It registers the position of a train trough the railway stations it passes. 
The system cannot be considered as real time, because of the distance between 
the stations. [9] 

•  GPS - The GPS system is used to determine the exact speed and position of 
the trains that are present on a railway section. Compared to Radar it is more 
suitable for railway systems because of the low error levels. [9] [10] 

•  Internet of Things (IOT) - This concept is represented in railway automation 
by the microelectromecanic (MEMS) sensors which could register the exact 
position of a train by the rail vibrations. [2] [11] 

•  Artificial Intelligence (AI) - It is the latest approach to railway automation. 
The AI railway automation systems are currently unstable but there are already 
many prototypes that could be used on real trains, with human presence 
redundancy. Line detection and railway traffic signals detection algorithms 
have been developed to ensure the safety of the AI systems used in train 
automation. The main limitations of these systems are the low resolution of 
the acquisition equipment or the necessity of powerful and expensive 
computers that could run the neural networks and the high complexity 
processing algorithms. [2] 

•  Other technologies - One of the most important aspects of the railway 
automation is the necessity of good communication between trains and 
dispatch. One of the best technologies proposed for railway automation is 5G, 
because it ensure a better broadband communication. With the help of Non-
Orthogonal Multiple Access (NOMA) technology, the system could be shared 
between multiple users simultaneously. [2] [12] 
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3 Design and Implementation 
The system proposed contains two main parts: hardware and software 
implementation. The hardware component consists of all the physical modules that 
should be designed and mounted on the railway infrastructure and on the 
autonomous trains. The software part implements the communication between the 
hardware components and the functionality of all the systems and automated tools 
that ensure the safety of the trains traffic and those that helps the railway vehicles 
to move. All the components are implemented on the H0 scale model, but they could 
be extended to real trains. 

3.1 Hardware Implementation 
The main hardware components are presented in Table 1. In addition to the elements 
presented, there have also been used other parts, such as transistors and relays.  
The main power source is a 12 V supply, connected to the rail tracks. The 
locomotive DC motor is powered by the voltage collected by the train wheels from 
tracks, via an H bridge, used for controlling the speed and the direction of 
movement. The H bridge is controlled by the Raspberry Pi board via General 
Purpose Input/Output (GPIO) pins. 

Table 1 
Hardware components 

NR. Hardware component Description 

1 NodeMCU Board Used as base station (dispatch). It reads the sensors 
and controls the switches 

2 Raspberry Pi 4B Board The main board mounted on the train, used for data 
processing and control. 

3 Raspberry Pi Camera Used for data acquisition 

4 Reed Sensor Used as train presence sensor. Mounted on the track; 
Triggered by permanent magnet. 

5 74HC4067 Multiplexer Used for multiplexing the inputs and outputs of the 
NodeMCU board 

In Figure 2 the schematic diagram of the main hardware components and the 
physical connections between them is presented. The hardware system is composed 
of two parts: the fixed component, represented by the trackside base station circuit 
that is controlled by NodeMCU and the mobile component, mounted on the train 
that is managed by Raspberry Pi. 

Due to the small number of Input/Output (I/O) pins of the NodeMCU board, there 
are necessary two multiplexers to increase the amount of the sensors or the relays 
that could be interfaced with the controller. 

On the bottom of the locomotive a permanent magnet is attached, so when the train 
will pass over the reed sensor that is fixed on the track, it will send a short impulse 
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towards the NodeMCU controller to notify that the line is busy. This operation mode 
is similar to the Eurobalises used in the ERTMS system described in section 2.1. 
Technically, both systems are used to determine the exact location of a train, 
information that can later be used to control rail traffic and avoid collisions.  
The communication between NodeMCU and Raspberry is made wireless.  
The communication process is described in section 3.2.2. All other electronic 
components are wired to NodeMCU, respectively to Raspberry board.  
The NodeMCU board is powered from a 5 V supply and the relay interface board 
is connected to the main power source (12 V). The Raspberry Pi board is interfaced 
with the Pi camera and the H bridge circuit used to control the locomotive 
parameters and it is powered from a LM2596 step-down module, used for 
converting the voltage acquired from the train wheels on the rails (12 V) into a 5 V 
supply. 

 
Figure 2 

Hardware implementation diagram – components 

3.2 Software Implementation 
The software component of the system includes the control of safety elements, 
traffic management on the network, speed control, image processing and the sign 
recognition algorithm as well as the development of the neural network structures 
used in these processes. For this reason, the software component represents the main 
part of the system, as it is responsible for controlling and managing all the hardware 
components described in section 3.1. This section could also be divided in two parts: 



D. A. Suciu et al. Low Cost Autonomous Trains and Safety Systems Implementation using Computer Vision 

– 34 – 

the NodeMCU code (Arduino C++ language) and the Raspberry Pi code (Python 
programming language), whose characteristics are described below. 

3.2.1 NodeMCU Code: 

The main purpose of the NodeMCU board is to interpret the values of the reed 
sensors from the system and to control the position of the railway switches along 
the simulated route. Thus, NodeMCU could be considered the dispatch which 
manage the railway traffic and ensure the safety of the entire system. It checks the 
presence of the trains on the tracks. In this way, it can determine the approximate 
position of every train and redirect the others, with the help of the railway electronic 
controlled switches, on the most suitable route to avoid the possible accidents. 

To conclude, the NodeMCU controller ensures the safety, the routing and the 
scheduling of the trains that are operating within the local railway network. This 
mode of operating could be compared with the main principles used in the 
standardized ERTMS system, described in section 2.1 and ensures the real time 
nature, one of the most important characteristics of the railway systems. One of the 
main reasons for which the nodeMCU board was chosen, is the high performance 
relative to the low price of this device and the flexibility of the communication 
channels. The possibility of using the wireless internet connection is also a 
mandatory aspect for the proper functioning of the system. 

The function diagram of the code developed for NodeMCU board is presented in 
Figure 3. 

 
Figure 3 

NodeMCU code – functions diagram 

The ”setup()” and ”loop()” functions, are the mandatory functions of the code, 
where all other functions are called. The code is composed of two parts: the 
controller component and the wireless communication implementation. The 
controller segment sets the inputs and the outputs used for the sensors and the 
switches and it controls the two multiplexers by the selection signal. The values 
read and written are manipulated in the infinite loop section of the code for 
transmitting the commands to the raspberry pi controller via Message Queuing 
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Telemetry Transport (MQTT or mosquito) communication protocol presented in 
3.2.2 section. The communication section implements the wireless connection and 
sets up the custom MQTT commands that are sent wirelessly to the Raspberry Pi 
controller. 

3.2.2 Raspberry Pi Code: 

The Raspberry Pi board represents the ”brain” of the locomotive and the main 
processing unit. It is the interface between the external environment of the 
autonomous train and the internal railway management and control system, due to 
the Pi Camera that is connected to it. The purpose of the python code written on 
Raspberry is to process the images captured by the camera and to classify the data 
by the predefined labels and then to send the information extracted to the base 
station via MQTT protocol. In addition, Raspberry must control the DC motor of 
the locomotive by the GPIO pins and the attached H bridge circuit depending on 
the requests made by the base station. 

The essential part of the code is the machine learning algorithm. The neural network 
developed was built on a more powerful processor than the Broadcom BCM2711, 
Quad core Cortex-A72 (1.8 GHz) chip with which Raspberry Pi board is equipped, 
because of the better speed and performance obtained while training and testing the 
AI model. The processor used was Intel Core i7 - 10750H CPU (2.60 GHz). Two 
versions of the model were developed and tested to analyze the performance in 
context of processing and classification speed and accuracy values obtained after 
training and validation of the neural network. The first version is a convolutional 
neural network (CNN) and the second one is a modified quantized model.  
The quantized network was built based on the first model. 

The first model is a sequential convolutional neural network that contains three 
convolutional layers (from which, two are hidden), each one followed by a max 
pooling layer and two different fully connected layers. The structure of the neural 
network described is presented in Figure 4. The reason for using a quantized neural 
network is to improve the performance on Raspberry Pi. The Broadcom BCM2711 
CPU is a low performance processor and the memory of the board is small, therefore 
the code could work slow if all operations are performed in floating point. Thus, the 
quantization can be a solution to increase speed. The principle of quantization 
method is the transformation of the floating-point values that are manipulated by 
the network into lower precision inputs. 

This process can lead to a higher speed, but the disadvantage is that the accuracy 
will decrease significantly, depending on the complexity of the calculus that 
should be performed. 

In conclusion, the quantized network will have the same structure as the original 
network, but the difference is the representation of values in the board memory and 
the background operations execution mode. The comparison between the 
performances obtained by the two networks will be performed in chapter IV. 
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Figure 4 

Convolutional neural network – structure diagram 

The Pi camera that is mounted on the locomotive send the frames of the live video 
as inputs to the neural network and the output is the corresponding label of the 
railway signal detected. The training data was collected with the same camera and 
was labelled with the help of Keras Tensorflow tool. There are seven H0 railway 
signs that are processed by this network, but there can be added more track signals. 
After this process, the label obtained is sent via MQTT to NodeMCU board, that 
take the matching decision depending on the signal detected. Message Queuing 
Telemetry Transport (MQTT or mosquito) communication protocol is one of the 
Internet of Things (IoT) transmission methods, used for message exchange between 
two boards. Depending on the configuration, it can be unidirectional or 
bidirectional, but there will be always a publisher-subscriber relation between the 
entities. The main component is the broker, in this case, the Raspberry pi board, that 
manage the entire communication system and connects all the subscribers to the 
network. In this case the Raspberry pi board works as broker and also as one of the 
clients. The other client is NodeMCU. The principle of communication is based on 
topics. All the clients that have subscribed to a topic will receive the data published 
on that topic. In this case, the data transmitted is composed of a byte, because there 
are seven railway signs. Every bit from the byte represents a railway signal. When 
a bit value is ”1”, it means that the sign corresponding to the bit position in the byte 
was detected. 

After the NodeMCU board receives the information from the locomotive, it sends 
back the corresponding commands to Raspberry Pi, also through MQTT. The DC 
motor speed and direction is then adjusted to ensure the proper operation of the 
train. The MQTT communication principal diagram is shown in Figure 5.  
The reasons for choosing Raspberry Pi were its small size, low price and the 
possibility of simple integration in the system. Also, the compatibility with others 
IoT platforms was a decisive aspect for choosing this board. In addition, the fact 



Acta Polytechnica Hungarica Vol. 21, No. 9, 2024 

– 37 – 

that Python is the main language for Raspberry is an advantage regarding the 
flexibility, simplicity and the high possibilities when it comes to high level machine 
learning technology. 

 
Figure 5 

MQTT communication principal diagram 

4 Experimental Results 
In this section, a comparison will be made between the two neural networks 
described in section 3.2.2. The main characteristics that will be analyzed concerns 
the speed of the neural network and the accuracy of the results returned after the 
training, testing and validation of the algorithm. 

In the case of the H0 scale model, the speed of the software and hardware 
components does not affect too much the performance of the entire system, but 
measured on real trains, the time is decisive, because of the higher risks when it 
comes to delays in the control process. Therefore, the hardware and software 
components must be optimized to the highest level in order to ensure the railway 
safety required by the proposed standard. 

In addition, the hardware performance is analyzed in terms of the system's reaction 
time, an essential aspect in railway traffic control. The primary aspect to be 
analyzed, is the response time of the hardware components responsible for ensuring 
the safety and organization of rail traffic. 

4.2 The Initial Convolutional Neural Network Performances 
The input of the neural network is a 255 × 255 pixels scaled color picture, so the 
real data instance dimensions will be 255 × 255 × 3. For the optimization of the 
network build process, the data was labeled and randomly grouped into three 
groups: Training, Validation and Testing. The initial data (576 images sorted into 7 
categories) is divided into batches of 32 images. The training data consists of 10 
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batches, the validation data of 5 batches and the test data of 3 batches. It is necessary 
that the number of training and validation data is greater than the number of test 
data to ensure the performance of the network and to avoid overfitting. 

The test batch is used only to confirm the validation accuracy and it will not be used 
in the last version of the neural network for memory usage minimization. The RELU 
(rectified linear unit) activation function (1) is used for the first three layers and for 
the first fully connected layer. For the output layer, the sigmoid activation function 
(2) is used. 

𝑓𝑓(𝑥𝑥) = � 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

  ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

The optimizer used for the minimization of the loss function is Adam. The Adam 
optimizer is an extended version of the stochastic gradient descent method and it 
provides a much higher performance in terms of number of iterations. The Adam 
optimizer use two moving averages to estimate the iterations: 

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (3) 

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (4) 

In the presented relationships (3) and (4), m represents the "momentum" element, 
which is an instantaneous calculation of the gradient mean, while 𝜈𝜈 denotes the 
squared sum of previous gradients. The terms 𝛽𝛽1 and 𝛽𝛽2 are the hyperparameters of 
the Adam optimization method, and these elements represent the main novelty 
compared to other gradient methods. The 𝑔𝑔𝑡𝑡 element, which appears in all three 
equations, signifies the gradient of the current optimization step applied to the error 
function. 

The loss and accuracy graphs for the neural network training are shown in Figure 
6, respectively in Figure 7. The logarithmic shape of the loss and accuracy curves 
brings out the decrease in error over time. 

The overall accuracy of the neural network is 97.014% and the average loss is 0.071. 
The average execution time while training is 23 seconds (2 second/step) and the 
average time during inference is 2.362 seconds (135 milliseconds/step). 

Following the analysis of loss and accuracy graphs for both the initial neural 
network and the quantized one, a relevant comparison of the performance of the 
two automation solutions can be conducted, as described in section 4.4.
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Figure 6 
Original network loss graph 

Figure 7 
Original network accuracy graph

Figure 8 
Quantized network loss graph 

Figure 9 
Quantized network accuracy graph

4.3 The Quantized Neural Network Performances 
The quantized neural network was obtained by modifying the original neural 
network using an adapted version of the Learned Step Quantization (LSQ) method 
[13, 14]. The LSQ method adjusts the scaling factor of each layer of a neural 
network during training. Thus, by tuning the parameters of the method, it can help 
the model to run faster, by reducing the number of bits used to represent the weights 
dynamically, while training the neural network. The main parameters of the method 
are: the number of quantization bits n, the scale factor q (it will change dynamically 
after each layer), the incremental shift, that is the value with which the scale factor 
is modified and 𝜖𝜖 which is a very low number used to avoid the division by 0 when 
the scale factor is computed. 
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Equation (5) represents the calculation formula of the current layer scale factor.  
The x factor represents the current layer weights vector. 

𝑞𝑞𝑖𝑖 = |max(𝑥𝑥)−min(𝑥𝑥)|
(2𝑛𝑛−1)+𝜖𝜖

 (5) 

The method provides high performance, because it reduces only the dimensions of 
the weights set, maintaining the float32 representation and yet it obtains an 
approximate 10% reduction of the execution time. The overall accuracy of the 
quantized network is 98.507% and the average loss is 0.024. The average execution 
time while training is 15 seconds (1 second/step) and the average time during 
inference is 2.216 seconds (96 milliseconds/ step). The loss and accuracy graphs for 
the quantized network training are shown in figure. 8, respectively in Figure 9.

4.4 Comparison between the Two Networks 
It can be observed that the performance graphs have similar shapes and the accuracy 
and the loss function values are comparable. It can also be observed that the 
quantized model is able to reach good values in less time (epochs) than the original 
one. In addition, the time required to compute the necessary calculations for training 
and inference is reduced in the case of the quantized network. In some cases, it has 
been observed that the inference accuracy was improved even if the precision of the 
initial network was reduced by the quantization algorithm. Table 2 presents all the 
performance characteristics of the two models for a better comparison. 

Table 2 
Presented neural networks comparison 

Property Initial Network Quantized Network 
Training Time 23 s (2 s/step) 15 s (1 s/step) 
Inference Time 2.362 s (135 ms/step) 2.216 s (96 ms/step) 

Training Accuracy 97.014% 98.507% 
Inference Accuracy 90.453% 88.232% 

Size on Disk 75.97 KB 37.961 KB 

In conclusion, the quantized network has a higher performance than the original 
network and it fits better to be used on edge computing devices (like Raspberry Pi) 
which requires a lower memory usage, but the same performances. The method is 
also suitable for the implementation on real systems on the trains. 
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4.5 Hardware Performance 

 

Figure 10 
Switch Time 

The hardware performance was evaluated by testing the speed of the component’s 
responses. In the ideal case, the elapsed time since the command was initiated until 
the pin has changed the state from Low to High or vice versa, is 0. In reality it is 
very important that this time period is as short as possible, at the millisecond level. 
The time between the change of the output pin state and the moment of the relay 
switching is ignored, due to the very short period of signal transmission.  
The switching time can be observed between the two vertical red lines from Fig. 10. 

After measuring the approximate switching time, it was concluded that the value of 
the commutation is under 10 milliseconds. Therefore, the hardware components 
show a sufficiently high performance to function on a real time system. In addition, 
the speed of the hardware components significantly contributes to the improvement 
of safety levels on the railway. In the case of real infrastructure, making simple 
modifications to both the physical components and traffic control systems can 
enhance the safety of future autonomous trains. This factor constitutes a notable 
cost advantage in terms of the impact on an automation project. 

Thus, based on the analysis of software and hardware performance, it can be 
ascertained that the validity criteria of the study are met, paving the way for 
potential extensions in various developmental directions, as delineated in the 
concluding chapter. The final project board and the testing stand consisting of all 
hardware elements and railway traffic control and safety systems is presented in 
Figure 11. 
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Figure 11 

The final project board 

Conclusions 

The goal of the proposed system is to integrate the necessary hardware and software 
systems to control an autonomous train in maximum safety conditions by using 
image processing and classification algorithms, developed with the help of two 
neural networks. By comparing the two neural networks presented, the result was 
that the quantized network is more efficient and it ensures the good functionality on 
different edge devices. The system has been tested on an H0 scale train model and 
all the safety requests have been fulfilled. 

In conclusion, the main goals of this paper were met. The proposed system manages 
to obtain higher performance than the existing systems by running on a quantized 
neural network and to integrate the hardware and the software components in a 
single low-cost implementation. The next goal is to extend the system on a larger 
scale and try other quantization methods for the neural network to improve even 
more the performances. The system can also be integrated in other railway safety 
environments, that are used in the non-standardized countries, without many 
changes to the infrastructure and with lower costs. 
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