
Online scheduling with machine cost and a
power function objective

T. Balla1, J. Csirik∗1, Gy. Dósa2, and D. Kószó1

1Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged,
Hungary
2Department of Mathematics, University of Pannonia, Egyetem u. 10, H-8200
Veszprém, Hungary

Abstract: We will consider a power function variant of online scheduling with machine cost.
Here, we have a sequence of independent jobs with positive real sizes. Jobs come one by one
and we have to assign them irrevocably to a machine without any knowledge about additional
jobs that may follow later on. With this problem the algorithm has no machine at first. When
a job arrives, we have the option to purchase a new machine and the cost of purchasing a
machine is a fixed constant. In previous studies, the objective was to minimize the sum of
the makespan and the cost of the purchased machines. In this paper, we minimize the sum
of the rth power of loads of the machines (r ≥ 2 is an integer) and the cost of purchasing
the machines. The cost of a new machine is 1. We prove that no online algorithm has a
competitive ratio smaller than 2− 2r−1

2r−1 for this problem. Moreover, for r = 2,3,4 we present

a 2− 2r−1

2r−1 -competitive online algorithm with a detailed competitive analysis which applies
the bin packing algorithm First Fit as a slave algorithm.

Keywords: scheduling; online algorithms; analysis of algorithms; power function objective

Dedicated to Professor Imre Rudas on the Occasion of his 75th Birthday

1 Introduction
There is a huge literature on online scheduling, and books on scheduling cover this
topic. To the best of our knowledge, quadratic cost function in scheduling was
introduced by Townsend [1]. Several authors elaborated these questions in the next
years: Bagga et al. [2], Gupta et al. [2], Croce et al. [3], Szwarc and Mukhopadhyay
[4] and Wei and Wang [5].

For parallel machines Cheng and Liu [6] investigated the quadratic function ob-
jective from a stochastic point of view. Ho et al. [7] used an industrial engineering
∗ Corresponding author, email address: jcsirik@gmail.com

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 495 –

T. Balla et al. Online scheduling with machine cost. . .

problem formulation, using the Normalized Sum of Square for Workload Deviations
(NSSWD) to measure the performance.. Walter and Lawrinenko [8] showed that
some theoretical results of [7] were not valid. Schwerdfeger and Walter [9] proposed
an improved algorithm for minimizing NSSWD on m identical machines. They also
showed that NSSWD was equivalent to the sum of squares of loads. Ouazene et
al. [10] considered another problem for workload balancing, where nonpreemptive
jobs had to be assigned on identical parallel machines.

Chandra and Wong [11] and Avidor et al. [12] furnished an analysis of algorithms
for parallel machine scheduling with a quadratic objective function from an approxi-
mation point of view. In [11], they analyzed the Longest Processing Time algorithm
from the worst case point of view. The algorithm has a preprocessing step which
simply sorts the jobs in decreasing order and then it puts the next job on the ma-
chine with the smallest load. The authors proved that for r = 2 the algorithm was
25
24 -competitive, and provided lower bounds too. They also gave similar results for
r ≥ 3. Avidor et al. [12] provided results for online algorithms as well.

In this paper we will investigate a variant of online scheduling with machine cost
(SMC), which was introduced by Imreh and Noga [13]. In this problem, jobs have
a positive size, and they come one at a time. When a job arrives, we need to assign
it to a machine, without prior information about the rest of the sequence. At first,
the online algorithm has no machines, but it has the option to buy a new one when
a job arrives. The cost of purchasing a machine is 1. Since the machine costs
and job sizes can be rescaled, any other constant cost function is equivalent. By
the load of a machine, we will mean the sum of the processing times of all jobs
assigned to the machine. The maximum load is often called the makespan. Their
objective is to minimize the sum of cost of the machines and the makespan. In [13],
it was proved that no online algorithm could achieve a smaller competitive ratio than
4/3. Moreover, a (1+

√
5/2) ≈ 1.618-competitive algorithm was given. Dósa and

He [14] presented an improved algorithm with a competitive ratio of (2
√

6+3)/5≈
1.5798. Dósa and Tan [15] showed that

√
2 was a lower bound of the SMC problem.

A 2+
√

7
3 ≈ 1.5486-competitive algorithm was also introduced. For the preemptive

variant, Jiang and He [16] showed that the lower bound of 4/3 was still valid, and
an algorithm whose competitive ratio did not exceed 1.3798 was designed.

Dósa and He [17] considered the scheduling problem with machine cost and rejec-
tion penalties and they gave an optimal online algorithm with a competitive ratio
of 2. Nagy-György and Imreh [18] presented an algorithm for the general case and
they proved that it was (3+

√
5)/2 competitive (≈ 2.618). He and Cai [19] studied

two different semi-online versions of the problem of machine cost and makespan
objective.

For a general cost function some further results are known from Imreh [20] and
Akaria and Epstein [21].

– 496 –

A preliminary version of our paper appeared in [22] where the case r = 2 was solved.

We will organize the paper in the following way. In Section 2 we will give some defi-
nitions and auxiliary computations. In Section 3, we will present a 2−2r−1/(2r−1)
general lower bound for our problem. In Section 4, we consider the properties of the
optimal offline algorithm for the exponential variant of the problem. Lastly, in Sec-
tion 5, we present an online algorithm with a detailed competitive analysis that ap-
plies the bin packing algorithm First Fit as a slave algorithm. For r = 2,r = 3,r = 4
the algorithm has a competitive ratio of 2− 2r−1

2r−1 . For r ≥ 5, we will give an upper
bound on the competitive ratio for this algorithm.

2 Preliminaries
The variant we investigate here will use a power function of the loads in the objec-
tive instead of the makespan. To define it more precisely we will introduce some
notations.

We will denote by N the set of natural numbers {0,1,2, . . .}, by N + the set N \
{0}. For every k,n∈N , we define [k,n] = {i∈N | k≤ i≤ n}. We shall abbreviate
[1,k] by [k]. Moreover, let R+ be the set of positive real numbers and R be the set
of real numbers≥ 0. Let B be a finite set. Then |B| denotes the cardinality of B, i.e.,
the number of elements of B.

Let Jn be an input for some n∈N + , i.e. a linearly ordered sequence of n jobs. The
jobs will be labeled 1,2, ...,n, denoted by j1, j2, ..., jn and presented to the online
algorithm in this order (the online algorithm does not know the value of n). We will
denote the processing time of job jk by pk > 0. Sometimes we will call it the item
size.

Given optimal offline solutions for all prefixes of the input, we will need the numbers
of machines used by these optimal solutions. Let OPTk denote the optimal offline
solution after the first k jobs have arrived as well as its cost. For an online algorithm
A, let us denote the cost of the algorithm after the first k jobs have arrived by Ak. We
denote the number of the machines of OPTk by m∗k . For a specific online algorithm,
let mk denote the number of the machines it buys after having the first k jobs.

Let us suppose that we use k machines and these are m1,m2, ...,mk. We will denote
the load of a machine mi by ld(mi) and this is the sum of the processing times of
the jobs on this machine. The machines of A with respect to J, denoted by MA,J , is
a linearly ordered set of machines, used by the algorithm to schedule input J. The
total cost of A on J with respect to r is defined by

A(r,J) = ∑
m∈MA,J

ld(m)r + |MA,J |. (1)

Moreover, we denote by Kr the set of all offline algorithms for this problem with
respect to r. We say O ∈Kr is optimal if O(r,J) ≤ O′(r,J) for every input J and

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 497 –

T. Balla et al. Online scheduling with machine cost. . .

O′ ∈Kr. Thus, from the definition there may exist more than one optimal offline
algorithm in Kr. We will denote by OPT one of the optimal offline algorithms. We
evaluate the quality of an online algorithm by using a competitive analysis. Now let
A be an online algorithm and OPT be an optimal offline algorithm. Let C ∈R+.
Then A is C-competitive if

A(r,J)≤C ·OPT(r,J)

for each input J. Moreover, we say that A is constant competitive if there exists a
C ∈R+ such that A is C-competitive.

For each r ∈N +,r ≥ 2 we define the following constants

br =
r

√
2r−1

2r−1−1
, qr =

br

2
, cr = 2− 2r−1

2r−1
,

and lr =
r

r
√

(r−1)r−1
.

Lemma 1. (br)
r = 2(qr)

r +1, i.e., (2qr)
r = 2(qr)

r +1 .

Proof. On the one hand,

(br)
r =

2r−1

2r−1−1
.

On the other hand,

2(qr)
r +1 = 2 ·

2r−1

2r−1−1

2r +1 =

2r

2r−1−1

2r +1 =
1

2r−1−1
+1 =

2r−1

2r−1−1
.

Lemma 2. cr =
(2qr)

r+2
(2qr)r+1 , i.e., cr =

(br)
r+2

(br)r+1 .

Proof. We know that

(2qr)
r +2

(2qr)r +1
=

2r−1

2r−1−1 +2
2r−1

2r−1−1 +1
=

2r−1 +2(2r−1−1)
2r−1 +(2r−1−1)

=
3 ·2r−1−2

2r−1
,

and

cr = 2− 2r−1

2r−1
=

4 ·2r−1−2−2r−1

2r−1
=

3 ·2r−1−2
2r−1

.

This completes the proof.

Lemma 3. Let a∈R and b,x ∈R+ such that a < b. Let r > 1 be a positive integer.
Then

(b+ x)r−br > (a+ x)r−ar

– 4 –
– 498 –

Proof. We have

(b+ x)r−br− ((a+ x)r−ar) =
r−1

∑
i=0

(
r
i

)
xr−ibi−

r−1

∑
i=0

(
r
i

)
xr−iai

=
r−1

∑
i=0

(
r
i

)
xr−i(bi−ai)> 0.

Lemma 4. Let x1,x2, ...,xm > 0 be real values, x1 + x2 + ...+ xm = c; moreover
c,u, t ∈R+ such that c < u < t, and let r > 1 be an integer. Then

m

∑
i=1

(tr− (t− xi)
r)> ur− (u− c)r.

Proof. We shall prove the statement by induction. For m = 1 the statement looks
like

tr− (t− c)r > ur− (u− c)r,

which is a trivial consequence of Lemma 3. Now let us suppose that the claim is
true for i = 1, ...,m− 1. Let us denote for the sake of simplicity c′ = c− xm. Then
we have

m−1

∑
i=1

(tr− (t− xi)
r)> ur− (u− c′)r.

Now, let us apply Lemma 3 by substituting xm instead of x; moreover t = b+ x and
u = a+ x. We have

tr− (t− xm)
r > ur− (u− xm)

r.

Combining the two inequalities, we get

m

∑
i=1

(tr− (t− xi)
r) =

m−1

∑
i=1

(tr− (t− xi)
r)+(tr− (t− xm)

r)

> ur− (u− c′)r +ur− (u− xm)
r.

We claim that this is bigger than ur− (u− c)r, i.e. we need to prove that

ur− (u− c′)r +ur− (u− xm)
r > ur− (u− c)r.

By simple calculation, this is the same as

ur− (u− xm)
r > (u− c+ xm)

r− (u− c)r,

which again follows from Lemma 3 by substituting u = b+ x, u− c+ xm = a+ x
and x = xm.

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 499 –

T. Balla et al. Online scheduling with machine cost. . .

The next result is an immediate consequence of Lemma 4.

Corollary. Let x1,x2, ...,xm, t > 0 be real values, x1 + x2 + ...+ xm = qr; moreover
t > 2qr, and let r > 1 be an integer. Then

m

∑
i=1

(tr− (t− xi)
r)> (2qr)

r− (qr)
r.

Based on the value of r, we will consider three different types of jobs. For the job ji
we will call the job

(i) small if pi ≤ qr,

(ii) medium if qr < pi ≤ 2qr, and

(iii) big if 2qr < pi.

Let J be an input. The total size (of J), denoted by P(J), and the total size of all
small jobs (of J), denoted by Ps(J), are defined as follows:

P(J) = ∑
j∈J

p j,

Ps(J) = ∑
j is small, j∈J

p j.

Note that Ps(J) ≤ P(J). If J is clear from the context, then we will abbreviate the
total size P(J) and the total size of all small jobs Ps(J) by P and Ps, respectively. We
shall use the same notation for subsets of J.

Let mi be a machine. Recall that

ld(mi) = ∑
j∈mi

p j

is called the load of machine mi and job(mi) is the linearly ordered set of jobs of
machine mi.

3 Lower Bound
Lemma 5. Let A be an arbitrary algorithm. Let us suppose that A uses at least two
machines when scheduling J. Consider any two machines mi,m j. If ld(mi)≥ ld(m j)
and we reschedule any job jk with pk < ld(m j) from the machine m j to the machine
mi, then A(r,J) will grow.

Proof. Let mi,m j ∈ MA,J , i 6= j and jk ∈ J , k ∈ job(m j) and 0 < pk < ld(m j) ≤

– 500 –

ld(mi). We have to prove that

(ld(mi)+ pk)
r +(ld(m j)− pk)

r ≥ ld(mi)
r + ld(m j)

r.

This inequality is equivalent to the following:

(ld(mi)+ pk)
r− ld(mi)

r ≥ ld(m j)
r− (ld(m j)− pk)

r,

which trivially follows from Lemma 3.

The next result is a direct consequence of Lemma 5.

Corollary. Let A be an arbitrary algorithm. Let us suppose that A uses at least two
machines when scheduling J. Consider any two machines mi,m j. If ld(mi)≥ ld(m j)
and we reschedule any job jk with pk < ld(mi) from the machine mi to the machine
m j so that after rescheduling the load of the machine mi will still be larger than the
machine m j, A(r,J) will be smaller.

Lemma 6. An online algorithm which never purchases a second machine is not
constant competitive.

Proof. We will prove our statement by contradiction. Let A be a C-competitive
online algorithm such that |MA,J | = 1 for each input J. Let Jk be an input having k
jobs, each of size 1. Algorithm A will use only one machine and so the cost of A is

A(r,Jk) = P(Jk)
r +1 = kr +1. (2)

To get a contradiction it is enough to see that

A(r,Jk)≤C ·OPT(r,Jk)

cannot be true for each k.

It is not hard to see that the optimal algorithm schedules one job to individual ma-
chines. If the optimum were to schedule two jobs to one machine, then the cost of
this machine would be

2r +1.

Scheduling these two jobs on different machines would have a cost of

1r +1r +2 = 4,

so we could decrease the cost of the optimum by putting these two jobs on different
machines because clearly

2r +1 > 4,

as r ≥ 2. So we have
OPT(r,Jk) = 2 · k. (3)

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 501 –

T. Balla et al. Online scheduling with machine cost. . .

Equations (2) and (3) are true for all k, so we should have

A(r,Jk) = kr +1≤C ·OPT(r,Jk) =C ·2 · k

for all k, which is a contradiction.

Remark. The same method of proof works if we use job sizes ε (instead of sizes 1).

Proposition 1. Let J be a finite sequence of arbitrarily small ε ∈R+ jobs, having
an even k number of jobs. Then OPT purchases at least two machines if br ≤ P(J).

Proof. To prove our statement, we have to check whether the cost of having two
machines is smaller than having only one. As k is even this means that

2 · (P(J)
2

)r +2≤ P(J)r +1.

This is true iff
2r−1

2r−1−1
≤ P(J)r,

which holds true if br ≤ P(J).

Theorem 7. No online algorithm has a competitive ratio smaller than cr.

Proof. Let A be a constant competitive online algorithm and J be a finite sequence
of arbitrarily small ε ∈R+ jobs. The sequence terminates depending on the situ-
ation where A purchases the second machine. When at the moment of purchasing
the second machine the number of jobs in J is even, we stop. If the number of
jobs is odd at this moment then the input will get one more small job. Algorithm
A has two choices, namely this last job can be scheduled to the first or the second
machine. The cost is smaller if it schedules it to the second machine, so we put it
there. Clearly, A will purchase a second machine since A is constant competitive
by assumption and Lemma 6. We now have an even number of jobs in our input
so by Proposition 1, OPT purchases at least two machines if br ≤ P. We will only
consider in detail the case where the second machine of A has one small job. The
other case is similar to this.

Thus, we consider the following two cases with respect to P.

1. If P < br, then we have

lim
ε→0+

A(r,J)
OPT(r,J)

= lim
ε→0+

(P− ε)r + εr +2
Pr +1

=
Pr +2
Pr +1

≥ cr,

because by Lemma 2
br

r +2
br

r +1
= cr.

– 502 –

2. If br ≤ P, then we have

lim
ε→0+

A(r,J)
OPT(r,J)

≥ lim
ε→0+

(P− ε)r + εr +2
2 · (P

2)
r +2

=
Pr +2

2 · (P
2)

r +2
≥ cr,

because by Lemma 1 and by Lemma 2

br
r +2

2 · (br
2)

r +2
=

br
r +2

br
r +1

= cr.

4 Properties of OPT
From now on let OPT be an optimal offline algorithm. To prove the competitiveness
of our algorithm in Section 5, we consider the following relaxed problem. We permit
preemption for every small job, but not for any medium or big job. In this case,
preemption means that the execution of a job can be divided into non-overlapping
time slots, and these parts can be executed by different machines. Moreover, it
is easy to see that the total cost of any optimal offline algorithm for the relaxed
problem is a lower bound of the total cost of any optimal offline algorithm for the
original problem. Formally, let OPTR be an optimal offline algorithm for the relaxed
problem and OPT be an optimal offline algorithm for the original problem. Then
OPTR(J)≤OPT(J) for each input J.

Proposition 2. We have lr ·P(J)≤OPTR(r,J) for each input J.

Proof. We will consider the following two cases with respect to J.

1. Let us suppose that we have |M| machines and P is equally distributable
among the |M| machines. This is the best possible scheduling and the cost
of this scheduling is

|M| · (P
|M|

)r + |M|. (4)

By a simple computation, this is minimal if

|M|= P(J) · r
√

r−1.

Substituting we get OPTR(r) = lr ·P(J). Hence, the statement holds in this
case.

We should make the following remark here. The estimate of the lower bound
is always true. However, lr ·P(J) is generally not an integer and we may only

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 503 –

T. Balla et al. Online scheduling with machine cost. . .

have an integral number of machines. If this is not integer, then from the
derivative it follows that (4) decreases until it reaches a minimum and then it
increases. So we have to take the largest integer before the minimum value
and the smallest integer after that. We have to compute (4) using these two
integers and the smallest value will give a better estimation of the minimum.

2. If P is not equally distributable among the |M| machines, then lr · P(J) <
OPTR(J) by Lemma 5. Thus, the statement holds.

We will call a machine overloaded if its jobs can be distributed into two sets and the
total size of each set is greater than qr.

Lemma 8. OPTR has no overloaded machine.

Proof. We will prove our statement by contradiction. We suppose that OPTR has
an overloaded machine. Let mi be this machine. Since mi is overloaded, we can
distribute the jobs of mi into two sets S1 and S2 such that qr < P(S1),P(S2) and
P(S1)+P(S2) = P(mi). In this case, the total cost of mi is

1+(P(S1)+P(S2))
r.

However, if OPTR were to purchase two new machines instead of mi and schedule
jobs of S1 to the first and jobs of S2 to the second new machine, this cost would be

2+P(S1)
r +P(S2)

r,

which is < 1+(P(S1)+P(S2))
r because(

r
1

)
·P(S1)

r−1 ·P(S2)+ ...+

(
r

r−1

)
·P(S1) ·P(S2)

r−1 >

> (2r−2) · (1
2
)r · 2r−1

2r−1−1
= 1.

This is a contradiction.

Corollary. The following statements hold for OPTR.

1. Any two big or medium jobs are scheduled to two different machines;

2. If a machine processes a big or a medium job, then the rest load is at most qr;

3. The total load of a machine is at most 2qr if the machine processes only small
jobs.

Proof.

1. It immediately follows from Lemma 8 and the definition of the medium job
and the big job.

– 504 –

2. By Lemma 8 and the definition of the small job, the medium job, and the big
job, it is easy to see that the statement holds.

3. We prove our statement by contradiction. To get a contradiction, we suppose
that OPTR has a machine mi such that ld(mi) > 2qr and p(j) ≤ qr for each
j ∈ job(mi). From the definition of a small job and ld(mi) > 2qr we have
|job(mi)| ≥ 3. Moreover, mi is overloaded since ld(mi) > 2qr. We are now
dealing with the relaxed optimum where we can use preemption for the small
jobs. So we can make two sets of small jobs such that each of them will have
a total size > qr and so by Lemma 8, the schedule of OPTR is not optimal.
This is a contradiction.

Proposition 3. OPTR has at most one machine with a load less than qr.

Proof. We will prove our statement by contradiction. We will suppose that OPTR
has two machines with a load less than qr. Let m1,m2 ∈ M be two distinct ma-
chines such that ld(m1), ld(m2)< qr. Then the total cost of m1 and m2 is ld(m1)

r +
ld(m2)

r +2. Following the proof of Lemma 8, it is obviously greater than (ld(m1)+
ld(m2))

r +1, i.e., OPTR schedules the load ld(m1)+ ld(m2) to one machine. Hence
there is a contradiction.

5 Algorithm
In the bin packing problem, there are items with positive sizes and unit capacity
bins. The task is to pack the items into as few bins as possible with respect to the
bin capacity.

FF is one of the best-known bin packing algorithms. It packs the items one by one,
and the next item is always packed into the first bin it fits. If the next item does not
fit into any bin, FF opens a new bin for it and packs the item into this new bin.

Now, we present our algorithm and prove its competitiveness. We will call our
algorithm the Different Machines algorithm, denoted by DM.

5.1 Description
1. If jk is a small job or a medium job, then DM schedules jk to a smallmedium

(SM) machine so that the load of a smallmedium machine cannot exceed 2qr.
Moreover, DM applies the FF rule to decide which machine will process jk
if there exists more than one smallmedium machine. If there is no small-
medium machine which could process the job, then DM purchases a new
(smallmedium) machine.

2. If jk is a big job, then DM schedules jk to a new machine and it will not
schedule any other job to this machine.

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 505 –

T. Balla et al. Online scheduling with machine cost. . .

In our algorithm, we will use two types of machines. The first type is called SM,
which can receive only small and medium jobs, and its maximum possible load is
2qr. The second type is called B, which can process only big jobs (big machines,
B). In the proof we will further divide the SM machines into those that process only
small jobs called small machines (S) and the remaining machines from SM will be
called medium machines (M). We will suppose that the algorithm uses a small, b
medium and c big machines.

To prove the competitiveness of our algorithm, we need the following lemma.

Lemma 9. Let α,β ,γ,δ ∈R+ such that

cr <
α

β
,

γ ≤ cr ·δ < α,

δ < β .

Then
cr <

α− γ

β −δ
.

Proof. We prove our statement by contradiction. We suppose α−γ

β−δ
≤ cr. Because

of γ ≤ cr ·δ we have
α− cr ·δ

β −δ
≤ α− γ

β −δ
≤ cr,

and from the second inequality we have

α

β
≤ cr,

which is a contradiction.

5.2 Competitiveness
To prove the competitiveness of DM, we need the following concepts. Let I ⊆ J.
Then we denote by J− I the input if we remove every job of I from J. Moreover,
we will call J the minimal counterexample if cr > DM(J)/OPTR(J) and there is no
I ⊆ J such that I consists of only big jobs, I 6= /0, and cr ≤DM(J− I)/OPTR(J− I).

Lemma 10. Consider the (relaxed) optimal scheduling of a minimal counterexam-
ple J. In this case, there is no big job that uses a machine on its own in the optimal
scheduling.

Proof. Suppose a big job X with size x uses a machine by itself in the optimal
scheduling. This job is also by itself in DM. Let J′ = J \ {X}. It follows from
Lemma 9 that

DM(J′)
OPT(J′)

=
DM(J)−1− x2

OPT(J)−1− x2 > cr,

– 506 –

which contradicts the fact that J is a minimal counterexample.

Lemma 11. If we have a big job in a minimal counterexample, then we do not have
a small machine in the relaxed optimum.

Proof. Suppose we have a big job whose size is 2 ·qr + x. Let the job be scheduled
on machine m′ in the relaxed optimal scheduling. We have no medium job on this
machine because then the machine would be overloaded and this is not possible
by Lemma 8. According to Lemma 10 we have some small jobs scheduled on the
machine m′ in the relaxed optimal scheduling. Let the sum of sizes of the small jobs
on this machine be y. Now if we have an additional machine m′′ with small jobs,
then the load of this machine is ≤ 2 ·qr because the machine cannot be overloaded
by Lemma 8 in the relaxed optimum. But then we can reschedule some small jobs
of size of y′,y′ ≤ y of m′ to m′′ (until m′′ reaches the load of 2 · qr) as then the
cost will decrease because of Corollary 3. If we have still small jobs on m′ we can
reschedule the jobs on machine m′′ on two machines, each having a load of qr, and
after rescheduling we repeat the above procedure. So we can decrease the relaxed
optimum. Finally the machine with the big job will have only this big job and it can
be deleted by Lemma 10.

According to Lemma 11 if we have a big job in the minimal counterexample then
the structure of the relaxed optimum is the following. We have b machines with one
medium job and c machines with one big job. The machine with the largest big item
must have some small items too. If this is not the case then this machine can be
deleted by Lemma 10. All machines must have the same load, say L > 2 ·qr. If this
is not the case we will reschedule some small jobs and decrease the cost.

Lemma 12. If the minimal counterexample J has a big job, then Ps(J)≤ qr.

Proof. Let us suppose that we have a big job. Then according to Lemma 10 on
the machine where the big job is scheduled, we have small item(s) in the case of
the relaxed optimum solution. We may have some medium machines in the relaxed
optimum but according to Lemma 11 we do not have a machine with only small
items. We know that the load of each machine is the same; let us say L > 2 ·qr.

Let us suppose that Ps(J)> qr and that we have m machines in the relaxed optimum.
Let us take x1,x2, ...,xm from the small jobs so that x1 +x2 + ...+xm = qr. Then the
remaining load on the machines will be L− xi, i = 1, ...,m. By Corollary 2, we get

m

∑
i=1

(Lr− (L− xi)
r)> (2qr)

r− (qr)
r = (qr)

r +1,

where the last part is valid by Lemma 1. But this means that if we schedule the small
jobs on a separate machine, the cost will be smaller, which is a contradiction.

Lemma 13. There is no big job at all in the minimal counterexample.

Proof. Let us suppose we have a big job in the relaxed optimum. Then because
of Lemma 12, Ps(J) ≤ qr. In the DM scheduling the big and the medium jobs are

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 507 –

T. Balla et al. Online scheduling with machine cost. . .

on different machines; here let m = b+ c. So the DM scheduling has at most m+1
machines. In the relaxed optimal schedule the number of machines is m and the load
of each machine here is L. It is evident that the maximum load for the DM packing
is at most L. So if we had

Lr · (m+1)+m+1≤ cr(Lr ·m+m)

(m+1)(Lr +1)≤ cr ·m(Lr +1)
m+1≤ cr ·m,

then the input would not be a counterexample. But this is true for m ≥ 3, as then
cr ≥ 4/3. So we have either m = 1 or m = 2.

Case 1. If m = 1 then in the relaxed optimal schedule we have one machine, only
one big job and all the small jobs are scheduled on this machine. With the DM
schedule we have two machines; the big job is scheduled on one machine and all
the small jobs are scheduled on the other machine. Let the size of the big job be
y > 2qr and the sum of the small jobs sizes be x≤ qr. Then

DM(J) = xr + yr +2, OPTR(J) = (x+ y)r +1.

We claim that

DM(J)
OPTR(J)

=
xr + yr +2
(x+ y)r +1

≤ cr = 1+
2r−1−1
2r−1

. (5)

This is clearly equivalent to

xr + yr +2≤ (x+ y)r +1+
2r−1−1
2r−1

· ((x+ y)r +1).

Rearranging, we have

1≤ (x+ y)r− xr− yr +
2r−1−1
2r−1

· ((x+ y)r +1).

Because of Lemma 3 we have (x+ y)r− xr− yr > 0. However, x+ y > 2qr and so

2r−1−1
2r−1

· ((x+y)r +1)≥ 2r−1−1
2r−1

· ((2 ·qr)
r +1) =

2r−1−1
2r−1

· (2r−1

2r−1−1
+1) = 1.

We see that (5) holds.

Case 2. If m = 2 then we have two machines in the relaxed optimum. We may have
two big jobs or one big and one medium job (and they are on different machines). In
both cases we must have some small jobs and the sum of small jobs is≤ qr and both
machines have a load of L. If we have two big jobs then in the DM scheduling the
two big jobs are on different machines and the small jobs are on a third machine. If
we have one big and one medium job, then the big job is alone in the DM schedul-
ing, and the medium item and the small items will be scheduled on two additional

– 508 –

machines. Let x = Ps(J). Then

DM≤ xr +2Lr +3, OPTR(J) = 2Lr +2.

We have to prove that

DM
OPTR(J)

≤ xr +2Lr +3
2Lr +2

≤ cr.

It is easy to see that if this inequality is valid for the largest possible x (it is qr and
for the smallest possible L (it is 2qr) then it is always valid. So it is enough to
demonstrate that

(qr)
r +2(2qr)

r +3
2(2qr)r +2

≤ cr.

But we know that (2qr)
r = 2(qr)

r + 1 (Lemma 1), and so (qr)
r = ((2qr)

r− 1)/2.
So we should have

((2qr)
r−1)/2+2(2qr)

r +3
2(2qr)r +2

=
(2qr)

r−1+4(2qr)
r +6

4(2qr)r +4
=

5(2qr)
r +5

4(2qr)r +4
= 5/4≤ cr.

Hence there is no big job in a minimal counterexample.

5.3 Proof of the competitiveness

We know that if we have a minimal counterexample then we do not have a big job in
this counterexample. So it is enough to have inputs with small and medium items.
For these inputs we will prove that for r = 2,3,4

DM(J)
OPTR(J)

≤ cr. (6)

Let us suppose that the DM scheduling of J uses m machines. We have the following
cases.

m=1 Both DM and OPTR buy one machine and we have the same schedule. So (6)
is true.

m=2 We know that br < P(J) ≤ 2 · br because we have two machines in the DM
scheduling. Because of the first part of this inequality, OPTR has at least two ma-
chines. Following the proof of Proposition 2, OPTR will use no more than 3 ma-
chines if

r
√

r−1 ·P≤ 3.

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 509 –

T. Balla et al. Online scheduling with machine cost. . .

This means that

r
√

r−1 ·2 ·br ≤ 3,

r
√

r−1 · r

√
2r−1

2r−1−1
≤ 3

2
,

(r−1) · 2r−1

2r−1−1
≤
(

3
2

)r

.

This is true for r = 2. If r > 2 then on the left hand side the ratio is the largest with
r = 3, namely here 4/3, so it is enough to have

(r−1) · 4
3
≤
(

3
2

)r

.

This is true for r = 3 and if we increase r by one, the left hand side increases by 4/3,
the right side by more. So we have at most three machines in the relaxed optimum.

We will need the following lemma.

Lemma 14. For 0≤ x≤ br, we have
(

br+x
2

)r
≥
(

br
2

)r
+ 2r−1

2r xr.

Proof.(
br + x

2

)r

=

(
1
2

)r
(

r

∑
i=0

(
r
i

)
xr−ibi

r

)
=

(
1
2

)r
(

br
r +

r−1

∑
i=0

(
r
i

)
xr−ibi

r

)

≥
(

1
2

)r
(

br
r +

r−1

∑
i=0

(
r
i

)
xr

)
=

(
1
2

)r

(br
r +(2r−1)xr)

=

(
br

2

)r

+
2r−1

2r xr.

Case 1. We have two machines in the relaxed optimum. The worst case for DM is
that we have a load of br on the first machine and the rest (i.e. x) on the second one
(0≤ x≤ br). It is enough to prove that

(br)
r + xr +2≤ cr

(
2
(

br + x
2

)r

+2
)
.

Using Lemma 14 it is enough to have

(br)
r + xr +2≤ cr

(
2
(

br

2

)r

+2 · 2
r−1
2r xr +2

)
.

– 510 –

Here the multiplicator of xr is larger on the right hand side so it is enough to see that

(br)
r +2≤ cr

(
2
(

br

2

)r

+2
)
.

Because 2
(

br
2

)r
+1 = (br)

r , we get

(br)
r +2

(br)
r +1

≤ cr,

which is true as the left hand side is cr.

Case 2. We have three machines in the relaxed optimum. We have to prove that

(br)
r + xr +2≤ cr

(
3
(

br + x
3

)r

+3
)
. (7)

We know that cr ≥ 4/3, so the right hand side is at least 4. This inequality holds if
(br)

r + xr ≤ 2.

We claim that this is true if x ≤ br/2. In this case the largest possible value of
(br)

r + xr is
2r−1

2r−1−1
+

1
2r ·

2r−1

2r−1−1
.

This is the largest if r is the smallest and then it is 4
3 +

1
8 ·

4
3 =

3
2 < 2. So the inequality

holds if x≤ br/2.

If br+x
3 ≥ br/2. Using the lower bound on the right hand side of (7) the right hand

side will decrease. The right hand side will decrease further if we replace cr by 4/3.
The left hand side will increase if we replace xr by (br)

r . So we have to verify that

2(br)
r +2≤ 4

3

(
3
(

br

2

)r

+3
)
,

2(br)
r +2≤ 4

(
br

2

)r

+4.

Again using 2
(

br
2

)r
+1 = (br)

r , we get

2(br)
r +2≤ 2(br)

r +2,

and this is clearly true. So we have now examined the case where the relaxed opti-
mum has three machines.

For m ≥ 3, we will use Proposition 2 to estimate the optimum. Let the load of the

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 511 –

T. Balla et al. Online scheduling with machine cost. . .

DM machines be t1, t2, ..., tm. Then we have to prove that

(t1)r +(t2)r + ...+(tm)r +m≤ cr · lr ·P(J). (8)

Let the smallest load be x. Then clearly the load of all the other machines is > br−x.
We will suppose that 0 ≤ x ≤ br/2. Let the load of a further machine be t. Then
br− x < t ≤ br. Let us investigate how to make the two sides of (8) change if we
increase t. The derivative of the right hand side (as a function of t) is lr · cr. On
the left hand side the load of the other machines does not change and the number
of machines remains the same. So the first derivative of the left hand side is (as a
function of t) r · tr−1 > 0 and the second derivative is r(r− 1) · tr−2 > 0. So tr is
convex and its first derivative is monotone increasing. This means that the critical
points in (8) are the possible endvalues for this machine, i.e. if its load is a possible
minimum or a possible maximum.

So it is sufficient to take instead of (8) a stronger inequality where the load of one
machine is x, and the load of all the others is either br− x or br. If all the others
have a load of br, then the worst case for x is either x = 0 or x = br. Here the first
possibility is worse and the right hand side does not increase but the left hand side
does.

We now know that one machine may have a load of 0 and all the others have a load
of br. The other possibility is that one machine has a load of 0 ≤ x ≤ br/2 and all
the others have a load of br− x.

We will now examine the first case, i.e. one machine has a load of 0 and all the
others have a load of br. Let

z = (m−1)(br− x)r +(x)r.

The second derivative is positive so we again get that the two worst cases are at the
end of our interval. More precisely, one of them is the worst case. We already had
x = 0, and the second case is x = br/2. We will look at the first one in the following.

If br
2 ≤ x≤ br, then the worst case is either x = br

2 , which leads to Case 1, or x = br,
which leads to Case 2.

We have now the following two cases:

Case 1. Each machine has a load of qr. Then we have:

(br/2)r ·m+m≤ lr · cr · (br/2 ·m).

– 512 –

r (br)
r +1.5 lr · cr ·br

2 3.5000 3.7710
3 2.8333 2.9715
4 2.6429 2.6610
5 2.5667 2.4793
6 2.5323 2.3538

10 2.5020 2.0759
20 2.5000 1.8294

Table 1
The values of (br)

r +1.5 and lr · cr ·br for certain values of r

Let us substitute (br/2)r = ((br)
r−1)/2 (Lemma 1). We get

(br)
r−1
2

·m+m≤ lr · cr ·
br

2
·m,

((br)
r−1) ·m+2m≤ lr · cr ·br ·m,

(br)
r−1+2≤ lr · cr ·br,

(br)
r +1≤ lr · cr ·br.

Multiplying with m−1,

(br)
r · (m−1)+m−1≤ lr · cr ·br · (m−1). (9)

Case 2. In the second case all the bins are full and one is empty. Here

(br)
r · (m−1)+m≤ lr · cr ·br · (m−1). (10)

This is a stronger condition than that of Case 1. So it is enough to investigate this
one. If this is valid then Case 1 will be fulfilled too. Dividing by m−1, we get

(br)
r +1+

1
m−1

≤ lr · cr ·br. (11)

This will be fulfilled harder if m is small. For m = 3, we have

(br)
r +1.5≤ lr · cr ·br. (12)

Substituting for some r values in

2r−1

2r−1−1
+1.5≤ r

r
√

(r−1)r−1
· (2− 2r−1

2r−1
) · r

√
2r−1

2r−1−1
,

we get the values shown in Table 1.

Now we have proved (6) for r = 2,3,4. This means that DM is the best possible
online algorithm for this problem as its competitive ratio equals the lower bound for

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 513 –

T. Balla et al. Online scheduling with machine cost. . .

this problem for r = 2,3,4 .

It is not hard to see that for r ≥ 5 the competitive ratio of DM is larger than cr.

A final remark. We can have an upper bound of the competitive ratio of DM for
r ≥ 5. To obtain this, we can use (12). If we replace cr by some dr ∈ R+ with
cr ≤ dr here, we get

(br)
r +1.5≤ lr ·dr ·br. (13)

From here

2r−1

2r−1−1
+

3
2
≤ dr ·

r
r
√
(r−1)r−1

· r

√
2r−1

2r−1−1
(14)

(
2r−1

2r−1−1
+

3
2
) ·

r
√

(r−1)r−1

r
· r

√
2r−1−1

2r−1 ≤ dr (15)

and so the left hand side is an upper bound of the competitive ratio for r ≥ 5. Natu-
rally cr is a lower bound for the competitive bound for every r, so for r ≥ 5 we have
an interval for the competitive ratio.

Acknowledgment

Research of György Dósa is supported in part by the National Research, Develop-
ment and Innovation Office –NKFIH– under the grant SNN 129364.

References

[1] W. Townsend. The single machine problem with a quadratic penalty function
of completion times: A branch-and-bound solution. Management Science,
24(5):530–534, 1978.

[2] P. C. Bagga and K. R. Kalra. Note - a node elimination procedure for
townsend’s algorithm for solving the single machine quadratic penalty func-
tion scheduling function. Management Science, 26:633–636, 1980.

[3] F. D. Croce, R. Tadei, P. Baracco, and R. D. Tullio. On minimizing the
weighted sum of a quadratic completion time on a single machine. Proceed-
ings IEEE International Conference on Robotics and Automation, 3:816–820,
1993.

[4] W. Szwarc and S. K. Mukhopadhyay. Minimizing a quadratic cost function
of waiting times in single-machine scheduling. Journal of the Operational
Research Society, 46(6):753–761, 1995.

[5] C. M. Wei and J. B. Wang. Single machine quadratic penalty function schedul-
ing with deteriorating jobs and group technology. Applied Mathematical Mod-
elling, 34:3642–3647, 2010.

[6] T. C. E. Cheng and Z. Liu. Parallel machine scheduling to minimize the sum
of quadratic completion times. IIE Transactions, 36:11–17, 2004.

– 514 –

[7] J. C. Ho, T. L. B. Cheng, A. J. Ruiz-Torres, and F. J. López. Minimizing the
normalized sum of square for workload deviations on m parallel machines.
Computers and Industrial Engineering, 56:186–192, 2009.

[8] R. Walter and A. Lawrinenko. A note on minimizing the normalized sum
of squares for workload deviations on m parallel machines. Computers and
Industrial Engineering, 75:257–259, 2014.

[9] S. Schwerdfeger and R. Walter. Improved algorithms to minimize workload
balancing criteria on identical parallel machines. Computers and Operations
Research, 93:123–134, 2018.

[10] Y. Ouazene, N. Q. Nguyen, and F. Yalaoui. Workload balancing on identical
parallel machines: Theoretical and computational analysis. Applied Sciences,
11(8), 2021.

[11] A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm
related to storage allocation. SIAM J. Comput., 4(3):249–263, 1975.

[12] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balanc-
ing in the lp norm. Algorithmica, 29(3):422–441, 2001.

[13] C. Imreh and J. Noga. Scheduling with Machine Cost, volume 1671 of Lec-
ture Notes in Computer Science, pages 168–176. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[14] G. Dósa and Y. He. Better online algorithms for scheduling with machine cost.
SIAM Journal on Computing, 33(5):1035–1051, 2004.

[15] G. Dósa and Z. Tan. New upper and lower bounds for online scheduling with
machine cost. Discrete Optimization, 7(3):125–135, 2010.

[16] Y. Jiang and Y. He. Preemptive online algorithms for scheduling with machine
cost. Acta Informatica, 41(6):315–340, 2005.

[17] G. Dósa and Y. He. Scheduling with machine cost and rejection. Journal of
Combinatorial Optimization, 12(4):337–350, 2006.

[18] J. Nagy-György and C. Imreh. Online scheduling with machine cost and re-
jection. Discrete Applied Mathematics, 155(18):2546–2554, 2007.

[19] Y. He and S. Cai. Semi-online scheduling with machine cost. Journal of
Computer Science and Technology, 17(6):781–787, 2002.

[20] C. Imreh. Online scheduling with general machine cost functions. Discrete
Applied Mathematics, 157(9):2070–2077, 2009.

[21] I. Akaria and L. Epstein. An optimal online algorithm for scheduling with
general machine cost functions. J. Sched., 23(2):155–162, 2020.

[22] J. Csirik, G. Dósa, and D. Kószó. Online scheduling with machine cost and a
quadratic objective function. In A. Chatzigeorgiou, R. Dondi, H. Herodotou,
C. A. Kapoutsis, Y. Manolopoulos, G. A. Papadopoulos, and F. Sikora, edi-
tors, SOFSEM 2020: Theory and Practice of Computer Science - 46th Inter-
national Conference on Current Trends in Theory and Practice of Informatics,
SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings, volume
12011 of Lecture Notes in Computer Science, pages 199–210. Springer, 2020.

Acta Polytechnica Hungarica Vol. 21, No. 10 2024

– 515 –

